2,322 research outputs found
Cosmic censorship of smooth structures
It is observed that on many 4-manifolds there is a unique smooth structure
underlying a globally hyperbolic Lorentz metric. For instance, every
contractible smooth 4-manifold admitting a globally hyperbolic Lorentz metric
is diffeomorphic to the standard . Similarly, a smooth 4-manifold
homeomorphic to the product of a closed oriented 3-manifold and and
admitting a globally hyperbolic Lorentz metric is in fact diffeomorphic to
. Thus one may speak of a censorship imposed by the global
hyperbolicty assumption on the possible smooth structures on
-dimensional spacetimes.Comment: 5 pages; V.2 - title changed, minor edits, references adde
Electrodynamics of Media
Contains reports on four research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E
Electrodynamics of Media
Contains research objectives and reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)National Science Foundation (Grant GK-3370
Electrodynamics of Media
Contains research objectives and reports on four research projects.National Aeronautics and Space Administration (Contract NAS 12-1094)Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)Sloan Fund for Basic Research (M. I. T. Grant 174
Phase transitions in biological membranes
Native membranes of biological cells display melting transitions of their
lipids at a temperature of 10-20 degrees below body temperature. Such
transitions can be observed in various bacterial cells, in nerves, in cancer
cells, but also in lung surfactant. It seems as if the presence of transitions
slightly below physiological temperature is a generic property of most cells.
They are important because they influence many physical properties of the
membranes. At the transition temperature, membranes display a larger
permeability that is accompanied by ion-channel-like phenomena even in the
complete absence of proteins. Membranes are softer, which implies that
phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal
propagation phenomena related to nerve pulses are strongly enhanced. The
position of transitions can be affected by changes in temperature, pressure, pH
and salt concentration or by the presence of anesthetics. Thus, even at
physiological temperature, these transitions are of relevance. There position
and thereby the physical properties of the membrane can be controlled by
changes in the intensive thermodynamic variables. Here, we review some of the
experimental findings and the thermodynamics that describes the control of the
membrane function.Comment: 23 pages, 15 figure
On staying grounded and avoiding Quixotic dead ends
The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing
Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer
Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies
Arduous implementation: Does the Normalisation Process Model explain why it's so difficult to embed decision support technologies for patients in routine clinical practice
Background: decision support technologies (DSTs, also known as decision aids) help patients and professionals take part in collaborative decision-making processes. Trials have shown favorable impacts on patient knowledge, satisfaction, decisional conflict and confidence. However, they have not become routinely embedded in health care settings. Few studies have approached this issue using a theoretical framework. We explained problems of implementing DSTs using the Normalization Process Model, a conceptual model that focuses attention on how complex interventions become routinely embedded in practice.Methods: the Normalization Process Model was used as the basis of conceptual analysis of the outcomes of previous primary research and reviews. Using a virtual working environment we applied the model and its main concepts to examine: the 'workability' of DSTs in professional-patient interactions; how DSTs affect knowledge relations between their users; how DSTs impact on users' skills and performance; and the impact of DSTs on the allocation of organizational resources.Results: conceptual analysis using the Normalization Process Model provided insight on implementation problems for DSTs in routine settings. Current research focuses mainly on the interactional workability of these technologies, but factors related to divisions of labor and health care, and the organizational contexts in which DSTs are used, are poorly described and understood.Conclusion: the model successfully provided a framework for helping to identify factors that promote and inhibit the implementation of DSTs in healthcare and gave us insights into factors influencing the introduction of new technologies into contexts where negotiations are characterized by asymmetries of power and knowledge. Future research and development on the deployment of DSTs needs to take a more holistic approach and give emphasis to the structural conditions and social norms in which these technologies are enacte
Assessing stimulus–stimulus (semantic) conflict in the Stroop task using saccadic two-to-one color response mapping and preresponse pupillary measures
© 2015, The Psychonomic Society, Inc. Conflict in the Stroop task is thought to come from various stages of processing, including semantics. Two-to-one response mappings, in which two response-set colors share a common response location, have been used to isolate stimulus–stimulus (semantic) from stimulus–response conflict in the Stroop task. However, the use of congruent trials as a baseline means that the measured effects could be exaggerated by facilitation, and recent research using neutral, non-color-word trials as a baseline has supported this notion. In the present study, we sought to provide evidence for stimulus–stimulus conflict using an oculomotor Stroop task and an early, preresponse pupillometric measure of effort. The results provided strong (Bayesian) evidence for no statistical difference between two-to-one response-mapping trials and neutral trials in both saccadic response latencies and preresponse pupillometric measures, supporting the notion that the difference between same-response and congruent trials indexes facilitation in congruent trials, and not stimulus–stimulus conflict, thus providing evidence against the presence of semantic conflict in the Stroop task. We also demonstrated the utility of preresponse pupillometry in measuring Stroop interference, supporting the idea that pupillary effects are not simply a residue of making a response
Internet-based medical education: a realist review of what works, for whom and in what circumstances
http://creativecommons.org/licenses/by/2.0
- …
