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RESEARCH OBJECTIVES

1. Work is proceeding on the relativistic theory of quadrupolar media, and it is
expected that this will come to a satisfactory conclusion during 1969. Research will con-
tinue to gain an understanding of power, energy, stress, and momentum in dispersive
media, with the aim of providing a useful way of using frequency-domain information to
prove conservation theorems.

2. The study of nonlinear interactions in CO 2 lasers is concerned on the one hand

with gain saturation, as determined by relaxation among the vibrational-rotational levels
and by spatial diffusion. The equivalent number of levels participating in cw laser action
will be determined experimentally in a system in which spatial diffusion effects are min-
imized. The experimental and theoretical study of the nonlinear response of a laser
amplifier to pulses of duration comparable to the inverse linewidth will be continued.
A cavity-dumping scheme has been successfully implemented for this purpose.

On the new cw H 20 laser, which was built for NASA and is now located at the

Research Laboratory of Electronics, studies on the relaxation rates and saturation
mechanisms of the cw lines will be made. Frequency stability measurements will be
carried out.

3. Numerical, theoretical, and analog analyses of coaxial and waveguide junctions
are being made. The objectives are to determine a versatile computational method and
to provide a meaningful display of the numerical results. Numerical and theoretical
analyses are being made of the excitation of modes in hollow dielectric circular wave-
guide by a localized source. The use of the reciprocity theorem in designing antennas
with parasitic reflectors is being studied.

L. J. Chu, J. I. Glaser, H. A. Haus, P. Penfield, Jr.

A. STEP RESPONSE OF INHOMOGENEOUSLY BROADENED

LASER MEDIUM

In the bandwidth measurement of CO 2 at 10. 6 L it was necessary to match the

observed laser amplifier output, attributable to a step input, to a theoretically predicted

output.1,2 The theoretical predictions of the small-signal step response were based on

This work was supported principally by the National Aeronautics and Space Admin-
istration (Contract NAS 12-1094), and in part by the Joint Services Electronics Programs
(U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)
and the Sloan Fund for Basic Research (M. I. T. Grant 174).
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equations developed for a homogeneously broadened medium. It was argued that the step

response of a high-gain amplifier is determined mainly by the frequency components of

the signal near the maximum of the gain vs frequency curve; but in this region the gain

curves of a homogeneously broadened medium on one hand, and one that is both homo-

geneously and inhomogeneously broadened on the other hand, are hardly distinguishable.

Hence one would expect that the step responses of two such media of high gain should be

practically indistinguishable.

A computer program has been set up which evaluated the step response of a medium

with both homogeneous and inhomogeneous broadening. Figure XVII-1 shows some

results. The different curves labelled A-E are evaluated for different gain constants

a(m-1). The length of the system is 5 m. The output is normalized to its steady-state

value in each case.
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Normalized step response for inhomogeneously
broadened medium.

The bandwidths of the homogeneous and inhomogeneous broadening are defined as the

widths of the Lorentzian and Gaussian curves, respectively, at the points at which they

drop to half of their value at the center. The curve labelled E' is evaluated for the same

sum of bandwidths of 80 MHz, the same steady-state gain as that of E, but with different

apportionment of the inhomogeneous vs homogeneous broadening. One can see that the

difference in the output is relatively small.

H. A. Haus, C. M. Watson
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B. THEORY OF EXCITATION OF ELECTROMAGNETIC MODES

IN HOLLOW CIRCULAR DIELECTRIC WAVEGUIDES

This report is concerned with the mathematical analysis of the electromagnetic waves

excited in a hollow dielectric waveguide of circular cross section by a sinusoidally time-

variant electric or magnetic point dipole having arbitrary orientation and location inside

the waveguide. The waveguide shown in Fig. XVII-2 consists of a slightly lossy dielec-

tric surrounding a vacuum hole; the hollow dielectric waveguide has been under consid-

eration for the guided transmission of optical energy.

The problem of determining the allowed modes for the hollow dielectric waveguide

has been formulated exactly and solved numerically for both the circular and the plane

parallel cases. 1,2 The excitation of the hollow dielectric waveguide by any source of

electric or magnetic current has also been formulated and solved asymptotically for the

plane parallel case.1,3 The excitation of the solid circular cylindrical dielectric wave-

guide by a longitudinal point electric dipole located on the axis of the cylinder has been

formulated and solved.4

The exact analysis of the fields generated by the electric or the magnetic point dipole

of arbitrary orientation and location inside a hollow circular cylindrical dielectric wave-

guide is accomplished in two steps. In the first step it is shown that the current distri-

bution of an electric point dipole or a magnetic point dipole is equivalent to a Fourier

superposition of both electric and magnetic surface currents on a circular cylindrical

tube concentric with the waveguide axis. In the second step the exact fields generated

by each of the Fourier components of the equivalent electric and magnetic surface cur-

rents on the tube are determined. The fields generated by the electric or magnetic point

dipoles are then equal to the Fourier superposition of the fields generated by the Fourier

components of the equivalent electric and magnetic surface currents on the tube.

1. Equivalence of Dipoles and current Tubes

We shall show that an electric point dipole and a magnetic point dipole, both of which

have arbitrary orientation, are equivalent to a Fourier superposition of electric and
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magnetic surface currents on a circular cylindrical tube.

The electric or magnetic point dipole is assumed to be located at the point x0 , Yo, zo
in a Cartesian coordinate system and to have an orientation such that its current moment

POINT
DIPOLE LOSSY

'a DIELECTRIC

CURRENT
TUBE CROSS

SECTION

Fig. XVII-2. Cylindrical coordinate
system.

POINT DIPOLE
T" CURRENT TUBE

I

/7
m

has r, , and z components in the cylindrical coordinate system shown in Fig. XVII-2.

The electric and magnetic current moments are given in MKS units as

SIDE VIEW

Id = I(i d +i d +i d )
rr zz

Id- = I irdr+i d +izd zrr z z)

A/m

V/m,

respectively, and the current densities are given by

J = Id 6(x-x ) 6(y-y o ) 6(z-z o )O 0 0
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J =I d 6(x-x ) 6(y-yo ) (z-zo) V/m 2 ,  (4)

where 6 denotes a Dirac delta function.

The 4 and z components of the current densities can be expressed as a Fourier

superposition of 4 and z directed surface currents on a circular cylindrical tube

located at r = b, where

b = o(5)

The current density on the tube can be obtained by expressing the delta functions in cylin-

drical coordinates

6(x-xo ) 6(y-y o) (z-z ) b 6(r-b) 6(4-40) 8(z-zo), (6)

where 4o is given by
0

-1 Yo
S= tan (7)

O

The 4 and z directed surface current densities on the tube are then given by

K = (i d +i dz) 6( - ) 5(z-z o )  A/m (8)

* I- *- *A
K = d +izd z  6(-o ) 6(z-zo) A/m (9)

Equations 8 and 9 can be expressed in terms of a Fourier integral to obtain the required

z dependence and a Fourier sum in order to obtain the required 4 dependence.

oo

K dh Kn(h ) e~jn -jhz (10)

n=-co

co

K = j K(h) e , (11)

n= -oo

where n is an integer, h is a real number, and K and K are vectors given byn n

K = i K + izK (12)
n n z nz

K =i K + i K (13)n n z nz

QPR No. 92 205



(XVII. ELECTRODYNAMICS OF MEDIA)

The Fourier coefficients are given by

- I - - -jno+jhz0K = = (ird +i d) e (14)
n b rr

* -jn o +jhz
K =- d +i d e (15)

nb rr

K and K can be expressed in terms of K and K by the inverse transform relations.
n n

K = 0 K e-jn +jhz ddz (16)
n 0 0 21

-* 2 Tr -jn4+jhz d~dz
K = Kr (17)

Equations 10 and 11 and 16 and 17 can be considered as an expansion of any - and

z-directed currents on a tube of radius b into traveling waves in the c and z directions.

The r-directed electric-point dipole current density can be expressed in terms of

q- and z-directed magnetic surface currents and the r-directed magnetic-point dipole

current density in terms of 4- and z-directed electric surface currents by using the

principle of equivalence. The principle of equivalence states that an electric-point

dipole generates the same fields as an infinitesimal magnetic current loop, and that a

magnetic dipole generates the same fields as an infinitesimal current loop. The equiv-

alence principle can be expressed by the differential relations

VXJ
electric * _(18)

dipole eq. jwEo

magnetic _ VXJ (19)
dipole eq. jW L

where the subscript eq. stands for equivalent, w is the angular frequency of oscillation,

Eo, Io are the permittivity-and permeability of free space. The equivalent currents are

obtained by applying Eqs. 18 and 19 to the r-directed currents.

Id 6'(#-#°) 8(z-z ) b

Jeq. - J b 6(-) '(z-z ) - b 6(r-b) (20)

eq. ]WE b 0 o o z b
0

J = (- ) '(z-z ) - z)) 6(r-b), (21)
Jeq. = + 0~ b ) 6' -0 i
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where the prime denotes differentiation. The Fourier coefficients of the equivalent

surface currents can then be obtained from Eqs. 16 and 17.

-* 1o Id -jn o+jhzo
K h + (22)

n E b ~e (22)
eq. o

- 1 I d - n -jno+jhzo

eq. o b z

3. Fields Produced by Fourier Components of Tubular Currents

We shall now obtain the longitudinal fields produced by 4- and z-directed currents

on a tube of radius b of the form e j n - j h z  It will be shown that the allowed modes for

the waveguide appear as poles in the coefficients for the field components for complex h.

The current distribution on the tube will be taken as a single Fourier component,

n, h. The fields generated by this current will consist of a sum of E and H cylindrical

waves in the three regions shown in Fig. XVII-2. The E electric field component definesz
the E wave uniquely and the H z magnetic field defines the H wave uniquely. The form

of the complex amplitudes Ez in the three regions of space is the same.

I. Ez = (k 2 -h 2 ) aln Jn ( r) ejn - jhz V/m

(24)

Hz =(bln/aln)Ez A/m

II. Ez = (k 2 -h 2 )(a2nJn(r)+c2 n Nn ( r)) ejn -jhz (25)

H z = (k2-h2)(b2n n(Xr)+d nNn(Xr)) ejJn-jhz

III. E= k2-h2) a H ( 2 ) (X r) e j n - j h z

z 3 3n n 3
(26)

H = (b3n /a 3n)Ez'

where J denotes a Bessel function of the first kind, N denotes a Bessel function of then (2) n 5
second kind, and H represents a Hankel function of the second kind. The constantsn
aln' a 2 n' C2n' a3n refer to the excited E waves, and the constants bln, b2n, d2n, b3n refer

to the excited H waves. k and k 3 denote the propagation constants in the vacuum hole

and lossy dielectric, respectively,

k 2  2 - 2  (27)k= w a E (m)o o
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2 2
k = w lo - j 4lo 0-,

3 0 o

where E and a- are the permittivity and conductivity of the lossy dielectric, X

denote the transverse propagation constants in the vacuum and lossy dielectric,

tively, for uniform plane waves having a longitudinal propagation constant h.

= k 2 - h 2 (m)

(28)

and X3
respec-

(29)

3 = h 2  (30)

All field components can be obtained from the E and H fields by differentiation.
z z

The excitation coefficients of the E and H waves can be obtained by matching the

boundary conditions on the tangential fields at r = a and r = b. It is clear that the coef-

ficients c2n and d2n which determine the N n type E and H waves, respectively, in

Region II are not affected by the presence of the lossy dielectric waveguide. They are

given by

1 rb / b nb (rb 2 Jn'(w) *
cn j-E - Jn(W) Knz + K + -- Kn V. m (31)

2n jwEo n nz n W 2 W n

d (--) Jn(W) K
zn jwo Jo n nz

* nhb rb n(
+K ) + TW Knp

nW2 2 W n
A m, (32)

where the prime denotes differentiation, the dimensionless propagation constant W is

defined as

W= k2 -h 2 b,

and K n K K denote the Fourier coefficients for the 4,- and z-directed cur-
nd ' n4' nz, nz

rents on the tube. The coefficients a2n and b2n are given by

A(J n , Nn )
a2n C2nA(J n, J )

j2wEo nh

rr 2
b = U

2n (J )
n n

jw 2L 0 nh

+ d2n

n n

1 (J A(N , Jn )

v c A (Nn Jn) d
2n - 2n'

n n

(33)

(34)

where the normalized propagation constants u and v are defined as

QPR No. 92 208



(XVII. ELECTRODYNAMICS OF MEDIA)

u = Vk - h 2 a (35)

v - h a. (36)

A(A n , B n ) is a complex function of two cylinder functions A (u) and B (u)

A(A B) = u A' (u ) - n ()uA (u) 2  ) - k2 n uB (u)
a vH(2)(v) vH(2)(v)

n n

2 2 12 A n() B (U) . (37)
u u v

A(J , N n ) determines the coupling between the Nn type E wave and the Jn type E wave,

and A(N, Jn ) determines the coupling between the Nn type H wave and the Jn type H

wave in Region II. A(J , Jn ) determines the coupling between the Jn type E and H waves,

and reduces to the transcendental equation for the free modes of the hollow waveguide

when

A(J , Jn) = 0 (38)

(see Stratton 5).

The remaining coefficients are given by

* 2K b
N (W) n

a = a + Cn - (39)
In 2n J (W) 2n W2Jn(W) WJn(W)

Knb 2

Nn (W) n
bin = b2n + n d + (40)

In 2n 2n 2 (W)Jn(W) W2Jn(W)

2 J(Nn) N (u)a = u a + c (41)

a3n 2 a2n 2v ZH(2)(v) H(2)(v)

n n

v (2 H) (v) H(2)

n n

The mathematical results may be expressed physically; in the absence of the lossy

dielectric the tubular currents generate E and H waves of the Jn type in Region I and
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(2)of the H type in Regions II and III. For this case,n

a2n = Jc2n = a 3 n (43)

b 2 n = jd 2 n = b 3 n. (44)

The H (2 ) type waves are outgoing cylindrical waves produced by the tubular currents.n
In the presence of the lossy dielectric waveguide the E waves of the H ( 2 ) type are notn
only "reflected" and "transmitted" at r = a but also produce "reflected" and "trans-

mitted" H waves, because of ~ -directed conduction and polarization currents induced in

the lossy dielectric. "Reflected wave" refers to an H type incoming cylindrical wave inn

Region II, and "transmitted wave" refers to an H type outgoing cylindrical wave inn
Region III. The H waves of the H type are also reflected and transmitted at r = a andn
produce reflected and transmitted E waves.

4. Conclusion

It has been shown that the fields produced by an electric or magnetic dipole of arbi-

trary orientation and location inside the hollow circular dielectric waveguide can be

determined exactly by a Fourier superposition of 4)- and z-directed tubular surface cur-

rents. Future consideration will include a numerical computation for the interesting

case of a small transverse dipole located on the waveguide axis. The dipole will be

approximated by a current distribution on a tube of radius b of the form

K=i K 1 cos 6(z-zo) (46)

in the limit as b goes to zero and K 1 goes to infinity so that bK1 is constant.

The author wishes to acknowledge the assistance of Professor L. J. Chu who sug-

gested the idea of the tubular currents.

J. I. Glaser
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C. MAXWELL'S EQUATIONS FOR DISCRETE SPACE

1. Introduction

This report is the first of a series that is concerned with numerical analysis tech-

niques for waveguide scattering problems. A waveguide scattering problem is defined

as the determination of the scattered fields produced when a specified waveguide mode

impinges on a highly conducting body, junction, or other discontinuity located inside the

waveguide. Numerical analysis techniques have been applied to electromagnetic scat-

tering problems in free space.1 The technique involves formulating the problem mathe-

matically with the aid of Maxwell's equations and the boundary conditions at the

conducting surface to obtain an exact integral equation relating the incident electric field

distribution tangent to the surface to the unknown induced surface current distribution,

and another exact integral equation relating the scattered electric or magnetic field dis-

tribution to the induced surface current distribution. The first integral equation is then

approximated by a set of N algebraic equations that relate the induced surface currents

at N distinct points on the surface to the incident electric field tangent to the surface

at N distinct points. Solution of these N equations yields the induced surface currents

at N points. The second integral equation is then approximated as an algebraic equation

relating the scattered field at any point to the previously computed induced surface cur-

rents at the N points.

The numerical analysis technique described for the free-space scattering problem

can be applied directly to the waveguide scattering problem. The integral equation, how-

ever, will involve a superposition of all of the waveguide modes, which are infinite in

number. This infinite sum can be approximated by a finite sum that can then be evalu-

ated numerically for waveguides whose modes are known analytically, e. g. , coaxial,

circular, elliptical, rectangular or parallel-plate waveguides. On the other hand, if the

waveguide modes are not available analytically, they must be computed numerically by

using available techniques. 2 These techniques involve the point-by-point solution of the

Helmoltz wave equation in two dimensions with Dirichlet or Neumann boundary condi-

tions on a curved boundary.

It is clear that the problem of determining the scattered fields produced when a spec-

ified waveguide mode in a waveguide of arbitrary shape impinges on a highly conducting

body, junction or other obstacle located inside the waveguide will involve a large amount

of numerical analysis and approximation. Implicit in the analysis will be the evaluation

of the fields at a large number of discrete points of space and of the currents at a large

number of discrete points on the surfaces of the conductors. As the scattering prob-

lems become more complex, the numerical analysis techniques, for all practical pur-

poses, amount to the solution of Maxwell's equations on a point-by-point basis!

For these previous reasons, it is of interest to determine a simple set of difference
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equations relating the electric and magnetic field components at discrete points in space

which approaches Maxwell's equations in the limit that the number of points per unit

volume goes to infinity. The discrete points and the difference equations will be a

"medium" and a "mode" of propagation, respectively, which are amenable to digital

computer analysis. Furthermore, by studying the simple solutions for the discrete case,

the fundamental limitations imposed on field solutions obtained by computer will be

derived.

In this report Maxwell's equations will be approximated as a set of difference equa-

tions relating the electric and magnetic fields evaluated at discrete points in space.

These difference equations apply to specially constructed cubic grids, and approach the

exact Maxwell's equations as the grid spacing goes to zero. It will be shown that the

grid comprises a medium of wave propagation and the simplest allowed waves will be

obtained and discussed. The treatment for dis-

crete space space closely follows the treatment

zE POINTS for continuous space given by Adler, Chu, and

Fano. 3 The "TE" and "TM" waves derived for

a discrete space reduce to the TE and TM waves

presented by these authors in the limit that the

grid spacing goes to zero.

SY 2. Discrete Space

We shall assume that space is filled with a

simple cubic grid or lattice. A unit cell is a

cube of volume a 3 . The lattice points are

x assumed to lie on a rectangular coordinate sys-

- H POINTS tem x, y, z as shown in Fig. XVII-3. The coordi-

nates of any lattice point can be written (pa, qa,
a

ra), where p, q, and r are positive or negative

integers. The distance vector to all points in

the lattice can be written

D i pa + iqa + i ra. (1)
x y z

The lattice will now be used as a basis to con-

struct two sublattices, an E lattice and an H lat-

tice, which are displaced replicas of each other.

The E lattice will be taken as the midpoints

Fig. XVII-3. of all sides of the cubic lattice, and the H lat-

tice will be taken as the center of all faces of the
E and H points for a unit cell
at the origin. cubic lattice. Both the E and H lattices are
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face-centered cubic lattices, and the H lattice points can be considered to be mid-

points of the sides of a cubic lattice identical to the original lattice but displaced by a/2

in each direction.

According to the previous difinitions, the coordinates of the E and H lattices are

given by

E lattice p+ , q, r p, q + r p, q, r + (2)

H lattice +t , q +-,r p+-,q,r + p,q+ ,r - . (3)

The H lattice then consists of the midpoints of the sides of a simple cubic lattice defined

by the distance vector

D=i P+ a+ q+- a+ zr-) a. (4)

Both E and H lattices are shown in Fig. XVII-3.

3. Discretization of Maxwell's Equations

Maxwell's equations in integral form can be approximated by difference equations

relating the electric field on the E lattice to the magnetic field on the H lattice. In com-

plex notation Maxwell's equations (ME) can be written in MKS units for source-free space

as

E ds =-jwi s, H nda (5)
c s

H ds = +jwE0  E " n da (6)
c s

where c is any contour, and s is any surface bounded by the contour c. Since Eqs. 5

and 6 are of identical form, except for a similarity transformation, the approximation

technique for one will apply in the same way to the other.

The contours applied to Eq. 5 will be taken as the edges of the square faces of the

cubic grid defined by Eq. 1, and the surfaces of interest will be taken as the faces of

the same cubic grid. The contours and surfaces to be applied to Eq. 6 are to be taken

as the edges and faces of the cubic grid defined by Eq. 4.

The contribution to the line integral around a given square face from a single edge

will be approximated by the value of the integrand times the length of the edge. The con-

tribution to the surface integral over a given face will be approximated by the value of the

integrand at the center of the face times the area of the face
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E * ds E c ia (7)
edge c s

=daH na . (8)
~quare H " n da H c 2
square

It is evident that the H points taken for the surface integrals in Eq. 5 are identical to the

H points taken for the line integral in Eq. 6, and vice versa for the E points. Therefore,
at each point only one field component is required, and the field component can be iden-

tified by knowing the coordinates of the point of evaluation. These points are now listed

for classification purposes.

Ex (p + q, r Hx q + (p , r +

E q + 1, r H p + , q, r + (9)

E p,q,r+) H (p+ , q + ,r).
z (P+ , z 2 2

The discrete form of Maxwell's equations can now be obtained by using the approxima-

tions indicated by Eqs. 7 and 8. In order to simplify the notation, each field component

will be labeled by an argument of the form (p, q, r). The point in space where the field

is being evaluated can be determined by adding the appropriate half-increments to the

agruments.

When Eq. 5 is applied to the three faces of the unit cube centered at the point

+ 2' q + -, r + -, three equations are obtained:

2a(E (q+l)-E (q)-E y(r+1)+E (r)) = -j a2H x(p,q, r)z z y y o x

a(E (r+1)-E (r)-E (p+1)+E (p)) = -joop a2H (p, q, r) (10)

2
a(E y(p+1)-E (p)-Ex(q+ 1)+Ex(q)) -j a Hz(p, q, r).

When Eq. 6 is applied to the three faces of the unit cube centered at the point (p, q, r),
three equations are obtained:

a(H (q)-H (q-1)-H y(r)+Hyrr-1)) = +jE aE x(p, q, r)

a(Hx(r)-Hx(r-l)-Hz(p)+Hz(p-1)) = +joaE (p, q, r) (11)

2a(H (p)-H (p-1)-H (q)+H (q-1)) = +Jm€ a E (p , q , r).
y y x x o z~~~)
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All possible equations can be obtained by allowing the variables p, q, r to be all pos-

sible positive and negative integers including zero, for Eqs. 10 and 11. The "plane

wave" solutions of Eqs. 10 and 11 will now be investigated.

4. Uniform and Nonuniform TE and TM Plane Waves

in Discrete Space

TE and TM plane waves that satisfy Maxwell's equations for discrete space will

be investigated. A plane wave is defined as a solution of the complex Maxwell's equa-

tions for the electric and magnetic field that varies as

E = E e-pu-qv-rw (12)

H= H e-pu-qv - rw  (13)

where p, q, r are positive and negative integers including zero, Eo, Ho are complex

vectors having three complex components, and u, v, w are taken as the x, y, and z com-

ponents of a propagation vector y, where

y = Ux + viy + wi, (14)

with u, v, and w complex quantities. The convention for the labelling of E and H is

the same as that discussed above.

A reduced set of Maxwell's equations for the complex amplitudes E and H is
O o

obtained by substituting Eqs. 12 and 13 in Eqs. 10 and 11. Under the assumption that

the amplitudes are independent of p, q, r, just as in real space the plane wave ampli-

tudes are independent of x, y, z, the following equations are obtained:

rl X Eo = +jwtLoaH (15)

F X H = -jwE aE, (16)

where r1 and F 2 are given by

--u - -v) + -w-
= (1-e )i + (1e )i + (1-e )iz (17)

_ - V 7 w -
r= (e -1)i + (ev-1)iy + (e -1)i . (18)

In the limit that u, v, w are small, F and F 2 both approach the vector y.

In order for Eqs. 15 and 16 to be consistent, three conditions must be satis-

fied.

QPR No. 92 215



(XVII. ELECTRODYNAMICS OF MEDIA)

- 2 2 2
- 1 - 2 Ea = -(ka) (19)1I " F2 00- Co =1

rF • Ho = 0 (20)

r2 E = 0. (21)

Equation 19 leads to a dispersion equation for u, v, w given by

4(sinh 2 (u/2) + sinh 2 (v/2) + sinh 2 (w/2)) = -(ka) 2 .  (22)

For small u, v, w, Eq. 22 reduces to

Y* =-(ka)2  (23)

which is identical to the dispersion equation for continuous space if the following nor-

malizations are made:

= (u/a) ' = (v/a) ' = (w/a) (24)
x y z

Y' = Y' + Y'i + y:' i = (/a). (25)

Equations 20 and 21 indicate that there are two types of solutions to Eqs. 15 and 16

which are independent of each other. The first is obtained by picking Eo to lie perpen-

dicular to the plane in which F 2 lies and by using Eq. 15 to solve for H o. The second

is obtained by picking Ho to lie perpendicular to the plane in which F I lies and by using

Eq. 16 to solve for E o . These two solutions are the transverse electric (TE) waves and

the transverse magnetic (TM) waves for discrete space. The pertinent relations for the

two possibilities are given by

TE E 0 o 2 Ho= (F 1 X Eo )/(j oa) (26)

TM H I 1' ,E0 = -(r 2 XH )/(jEa). (27)

It will now be assumed that the F vectors can only lie in three different planes xy,

zy, and xz. If rF1 lies in either the xy, yz or xz plane, then F 2 and " also lie in the

same plane. Under these restrictions, it is clear that the plane of propagation of the

TE and TM waves can be defined as the plane in which , 1 , and r2 lie, and that the

magnetic field in the TE case and the electric field in the TM case both lie in the plane

of propagation. These results are shown in Fig. XVII-4.

Once the plane of propagation has been defined as xy, yz, or xz, y will be a func-

tion of two parameters that satisfy the dispersion equation. For example, if the plane

of propagation is taken as the xz plane, u, and w determine , 1, and F 2 . The
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TM

k F1F
2

COMPONENTS

FIELDS Ey Hx , H

r rX Iz 2x ' r2z

J u, W

Fig. XVII-4.

COMPONENTS

H E Ez

rF, rlz , FIx , rIz

U, W

Transverse electric (TE) waves and transverse magnetic
(TM) waves for discrete space.

electric field is taken in the direction for a TE wave, and the magnetic field in the

z direction for a TM wave. It is clear from Eq. 22 that u and w cannot both be real

numbers. For v = 0, Eq. 22 becomes

4(sinh 2 (u/2)+ sinh2 (w/2)) = -(ka) 2 .

For example, if u is imaginary, then w can be either real or imaginary, depending on

how large u is. If u is imaginary, then the wave will propagate from point to point in

the x direction without attenuation but with a constant phase shift from cell to cell given

by

x = Im (u) rad. (30)

If u is real, then the wave will propagate from point to point in the x direction with no

phase shift but with a constant attenuation from cell to cell given by

a = Re (u) nepers.x (31)

In order to simplify the notation, it will be assumed that u, v, w are either real or

imaginary numbers but not complex numbers. This assumption will not affect the dis-

cussion but will restrict the generality of these results. The uniform and nonuniform

QPR No. 92

(29)

217



(XVII. ELECTRODYNAMICS OF MEDIA)

SPE

1.0

0.9

0.8 -

0.7 VP-- - -

0.6 -
PHASE VELOCITY

V
- 0.5 -
C

0.4 -

0.3 - GROUP VELOC

0.2 [ k = 2
X

a 
= 

CELL SPACING
0.1 - = WAVFLENGTH

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. XVII-5. Dispersion introduced
by discretization.

in phase and group velocity

Definition: A uniform plane wave in discrete space is a TE or TM wave whose plane

of propagation is the xy, yz, or xz plane and whose propagation constants uv, vw, uw,

respectively, are imaginary numbers. If either propagation constant is real, the wave

will be denoted as a nonuniform plane wave.

The properties of the uniform and nonuniform plane waves will be illustrated with the

aid of an example. Consider a nonuniform TE plane wave propagating in the x-z plane

and described by the dispersion equation (22). Assume that u is imaginary and that w

is obtained by solving Eq. 22. The fields associated with this wave are given by

= A e-jpp - wr -
o y

Ho = -(A/joa) e - j p p - w rL (l_-e-w) - (1-ej )z

(32)

(33)

where

u= jp

w = ±2 sinh1 2 + sin2 (P/2) .

(34)

(35)
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It is clear from Eq. 35 that p affects the propagation of the wave in the z (r) direction

in the following way

propagation -2 sin- I (ka/2) < < 2 sin- I (ka/2) (36)

attenuation P > 2 sin-I (ka/2) or p < -2 sin- 1 (ka/2). (37)

The dispersion introduced by the discretization can be observed by letting P = 0; this

case corresponds to a uniform plane wave propagating in the z direction. w is given

by

w = j 2 sin- 1 (ka/2). (38)

The apparent phase velocity is then given by

V = c(ka)/Im (w), (39)
P

whereas the group velocity is given by

V = c/(d(Im (w)/d(ka)). (40)

The curves are plotted in Fig. XVII-5. It is clear that for small ka the phase and group

velocities approach the value of c very closely. Of course, the phase error increases

linearly with the number of cells taken.

J. I. Glaser
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D. RELATIVISTIC TREATMENT OF MULTIPOLAR MEDIA

In a previous report and a paper the theory of quadrupolar media was developed

as an extension of Chu's theory of electrodynamics of dipolar media. The thermody-

namic aspects of the theory were treated nonrelativistically. It was not clear at the

time whether the kinematics, and the field equations, were consistent with relativity.

We report here the relativistic formulation of "multipolar" media; that is, we give a

treatment of a macroscopically neutral medium containing two oppositely charged clouds

of charge. An expansion in terms of the displacement of the (+) charge with respect
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to the (-) charge is carried out.

The charge density and current density are expressed up to second order in the dis-

placement, thereby giving both dipolar and quadrupolar terms. This expression is

formulated relativistically by introducing in the laboratory frame a four-vector of dis-

placement having the three-vector displacement for its space part and zero in its time

part. A four-vector of this kind is necessarily frame-bound. If transformed into another

laboratory frame, moving with respect to the first one at a constant velocity, u, its three-

space part does not give the vector distance of the charge displacement as measured by

an observer in the new frame and its four-part is not zero. Hence, in the new frame, one

needs to redefine the expression for the current vector. The formulation is frame-bound.

Next, we develop the transformation of the length four-vectors defined in two dif-

ferent frames. Then, we use these transformation laws to compare the expressions

for the four-current density obtained by two observers. When one current density is

transformed by the relativistic transformation corresponding to the relative velocity

of the two frames, one expects to get the same result. This is found to be the case.

Consider a negative-charge cloud described by the density -p(x). We assume that

another, positive-charge cloud, is displaced with respect to the negative one by the vec-

tor distance, C(x). We would like to compute the net charge density p to second order
3

in -. This problem has been solved by Sturrock. Since his solution is a geometric

one, carried out in one particular frame, it is also valid relativistically. The result

is

a

r

2 8x ax (i)
r s

The first term is the dipolar term, the second is the quadrupolar term. Suppose that

the negative charge density -p(x) moves with a space-dependent velocity v . The cur-
3

rent density jr arising from the motion of the two clouds of charge is

r at s axr() = t + vs a)

+ + s  + a {pvrtstu}. (2)

The current density and charge density may be grouped into a four-vector

ja =[ r,.ic ] (3)
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which enters as a source into Maxwell's equation in four-notation.

aGap

ax- . (4)
a

Equations 1 and 2 can be cast into four-notation by introducing a distance four-vector

defined in the laboratory frame in which the current and charge densities are viewed:

9a = [r' 0]. (5)

The three-space part of the four-vector is the vector displacement between the two

charge clouds, the four-part of the four-vector is equal to zero. With this notation one

can write the four-vector current in the form

" [ n a I 2 8[ v 2

ja x qno(v a a x nov Yp x 2 ax ax qno a , (6)

where we have used the four-vector velocity

va yvr, ic]. (7)

In expression (6) appears a four-vector ga which has a simple physical meaning only in

one inertial frame, the particular laboratory frame chosen for its definition. If one

considers an observer in a different inertial frame, he would use a differently defined

four-vector and hence end up with a four-current expression that is not the transform

of (6), but which would contain a four-vector defined in its frame according to the defini-

tion (5). This in itself would not be particularly disturbing. The way in which the cur-

rent and charge densities were evaluated, by its nature, is frame-bound. The detailed

expressions may differ in different frames, provided a relativistic transformation of

the current four-vector as a whole from one frame to the other leads to the same net

four-vector.

In order to compare the current four vectors derived above in two different frames,

we want to study the transformation law of the four-vector (5). The analysis below fol-

lows closely the derivation given elsewhere,4 with the modification that the length is

allowed to vary with time. Consider a length element, with end points r and p.

The end point F will be associated later with the negative charge, - with the positive

charge. Suppose that the length vector is observed in the unprimed frame at the time

t = 0, and that the position of the end point r at this time is k. An observer in a frame

(primed frame) moving with respect to the frame under consideration (unprimed frame)

is assumed to set his clock with respect to the clock of the first frame at position r.

Events at positions r and P that are simultaneous in one frame are not simultaneous in

another frame. We can evaluate the time shift by expressing the position p as a func-

tion of time, taking into account velocity and acceleration.
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r=k

1 2
p = K + -T + aT + ... , (8)

where v is the velocity, and F the acceleration. The expansion is broken off at a term

of second order in T. In this way, we shall obtain a law of transformation that is cor-

rect to second order in T which, in measurements of length, is correct to second order

in Id = Ip-r . Inclusion of derivatives of the acceleration would be necessary only

when octopolar terms are to be retained.

The relativistic transformations for length and time can be used to express the dis-

tance d' = p' - k in the primed frame in terms of the unprimed quantities and 7, with

7' = t' = t = 0. When this is done and that solution of the quadratic equation for 7 is

picked that reduces to the proper solution for E 0, and finally an expansion is made

to first order in E (and thus second order in ), one obtains (compare Penfield and

Haus 5

1 dll uX (dXv)
d' = + +

c

- 1
S a uX (aXv)

2 c -a y 2

Consider now an observer in the unprimed frame who measures a vector distance d.

He defines the four-vector (5). The observer in the primed frame moving at velocity if

with respect to the unprimed frame, defines a vector distance d' and a four-vector 5'

= [d', 0]. (10)a

When ' is transformed by the conventional transformation law into the unprimed frame,
a

we obtain the four-vector rz which differs from the four-vector S . With some manip-
a a

ulation one obtains for a - a in four-notation
a a

2u$ 1 u a

2 u v 6 6 ax 6 a
( Y a 11

+- yuy ( u) E ()
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Here we have introduced the four-vector velocity

1
= [v, ic]. (12)

2

2
c

This velocity differs from the velocity v of the negative charge, to which it is con-

signed, on two counts: The three-velocities v and -v differ by da/dt; and the y-factors

differ, y(v) y(v). Hence, to second order in , 6 can be written

(- + second order scalar term v
u v a

2
u p a u P a
+ v6 + v a v] (13)

Y y 6  y y a

We can now compare the current densities obtained by the two observers.

The observer in the primed frame constructs a current four-vector analogous to (6)

a a ax

1 a2= ax? axq 0(n a-vo --

This current four-vector is transformed into the unprimed frame simply by replacing

all primed four-vectors by their unprimed counterparts.

Now the current density ja(c) is not necessarily equal to the current four-vector

ja () although on physical grounds we should expect them to be equal. Let us take the

difference between the two expressions for the current four-vector.

x 0 a p a 8 o Y p 8x

8 a 8 a a

qn v a a a qn v a6 a + a2  qn vax o Y -x ax qno vyp ax ax Y x {oY 0 va y

2

+1 8axp ax (qnova6 6 }. (15)
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The first term in (15), the dipolar term, gives no contribution attributable to the term

proportional to v in (13). Since the remaining term in (13) is of second order in a,
we see that, to first order, the two currents j (p) and j (ap) are identical, even though

the "measurements" on the basis of which they were defined were performed in different

frames. Next, consider terms of second order. For this purpose, one need consider

in the dipolar term solely the contribution

u1 p aa 1 2 a

u - Vuv) v v
uv uYY Y ) a

whereas in the quadrupolar terms 5 can be approximated by 6 - v because every-
ly uPv P

where 6 appears multiplied by a first-order term. When this is done, one finds after

some manipulation,

ja( ) - ja( ) = 0.

In carrying out the computation, one finds that quadrupolar terms defined as terms

of second order in , on the one hand, a on the other hand, would not have cancelled by

themselves. Cancellation is achieved in that the first-order terms in ( of j( ) con-

tribute second-order terms in a when expressed in terms of a. Physically, this means

that effects identified as quadrupolar by one observer are identified as part of a dipolar

contribution by another observer. The concept of a quadrupole is not frame-invariant.

This can be checked by direct comparison of a quadrupole in two different frames when

the quadrupole is time-variant. Because of nonsimultaneity in the two frames, a time-

variant charge configuration with zero net dipole moment acquires a dipole moment in a

frame moving with respect to the first frame.

The results obtained here agree with those from a (nonrelativistic) treatment in one
1 2 1

frame.1, The quadrupole tensor I qn (aa + a) is not general in the sense that its

determinant vanishes. The analysis can be generalized to cover arbitrary quadrupolar

density distributions by superposition of N pairs of charge distributions. One defines

the quadrupole tensor

N

i= 1

with components that are not now in any way restricted. In the same way, one may

define the antisymmetric tensor

N n (i)

A = - 1 qn~i)(a - a (17)
ap 2 o0 y8x i a ax

i= 1 V
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Then,

J a -ax
Ja (vaP -vPa) x)ax (v QPY)a I~ a~~P a 3

a V
ax V ky 8 x ) n

ya o

+ - Aa

where

N
P q (i) (i)

P : , n )P "
ip o
i=1

(18)
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