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A. PARAMETRIC CROSS-MODULATION EFFECTS IN GAS LASERS

Many phenomena in gas lasers have been explained by rate equations, which show

"hole burning" in the population inversion, but do not consider time variation of the pop-

ulation inversion when two, or more, oscillations coexist simultaneously within the

medium.

In recent experiments by M. Guerra, an external signal from a single-frequency,

tunable, Spectra Physics laser was injected into a long He-Ne laser oscillating in 7 or

8 modes at 6328 A. When this signal fell near one of the oscillating modes the output

showed, in addition to the amplified input signal, a signal with a frequency located sym-

metrically with respect to the signal frequency on the opposite side of the gain curve of

the laser medium. This cross-modulation "signal" cannot be explained if it is assumed

that the negative conductivity of the laser medium is time-independent. A density matrix

analysis of a Doppler-broadened two-level system in the presence of two simultaneous

oscillations showed that the time dependence of the negative conductivity can be sur-

prisingly large because of a synchronism effect.

In this report we shall analyze the density matrix equations in the presence of two

traveling waves of different frequencies. A perturbation signal is injected, and the self-

term (at the frequency of the injected signal) of the polarization density, as well as the

cross term of the polarization density, resulting from intermodulation products, is

evaluated. The signal-dependent parts of the self-term and cross term are found to be

comparable in amplitude. Integration of these terms over the velocity distribution

reduces the magnitude of the latter term compared with the magnitude of the former in

the ratio of the homogeneous linewidth to the Doppler linewidth. It is surmised that the

coupling of the modes in a laser cavity by the intermodulation products is responsible

for the self-pulsing observed by P. W. Smith. 2
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We start with the density matrix of a system with a very fast relaxation out of its

lower level so that this level may be considered essentially empty. Denoting the upper

level by the subscript 2, the lower level by the subscript 1, we have (note p1 l = 0)

+ v )p 22 = -jV 1 2 p2 1 +c. c.) - (P 22 2) /T 1  (1)

(+ + V 12 0p + jV 12 p22  (2)az 2at 2 212 12 22

The matrix elements pij.. are functions of time, space, and velocity v. The center fre-
o

quency of the Doppler-broadened profile is 12

We introduce two fields, at frequencies ca and ob so that the matrix element V 1 2
becomes

j(at-ka z )  j(obt+kb z )

V 12 = Va e + Vb e (3)

Wave b runs in the negative z-direction, wave a in the positive z-direction, since we

take k a and kb to be positive.

We shall solve (1) and (2) by a process of successive approximations. Since V12 has

two space and time dependences, we conclude that pl 2 will have also two such depen-

dences in the steady state:

a b
P 1 2 = p1 2 exp j (at-ka z ) + p 1 2 exp j(wbt+kbz). (4)

Introducing this Ansatz into (2), we have

a 22V a
P 1 2  1 (5)

j (A ) +T - jvk
2

b jp22Vb
P12 1j (A + + j v k

-j(awb) T + jvkb

where

o
Aa = - W0 >0 (7)

a a 12

AW b (wb w? 2 > 0, (8)
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in anticipation of the fact that wa and wb will lie on opposite sides of the Doppler profile.

When (5) and (6) are introduced into (1), the product p 1 2 V 2 1 and its complex conjugate

a* b *
each produce two time- and space-independent terms Pl 2 Va, pl 2 Vb and their complex

conjugates, as well as two terms with space-time dependence. Hence we find

o
AP 2 2  P22 - P22

= Ap22 + Aab exp j[(w a-b)t-(ka+kb)Z] + c. c. , (9)

where

oo 00 a * b * a* b*
P22 1 P2Va +jp12Vb -jp12Va 2Vb

T0 12 o 2
=-2 + 1 (10)T P2 2 1 Vb2-2 2 (Awa -vk )2 + 2 (Awb-vkb)2 +

2 2

This is the familiar lowering of the population inversion because of depletion by the laser

field. The term with the space-time dependence exp j[(Oa-c b)t-(ka+kb)z] is

a * b*
ab JPl 2 Vb - jP 1 2 VaAP 2 2 :1

22 j[(oa-Wb)-v(ka+kb T+

VaVbP22 1 1
a A1 +  

. (11)
j[(a- b)-v(ka+kb j a va T J(A b-vkb 1

+ b 1 2 2

Note that this term need not be smaller than the term Ap 2 2 . Indeed, consider the veloc-

ity groups v for which the hole-burning is most pronounced, va - AWa/ka, Vb = A b/kb.
If A = A b (that is, when the two frequencies are located symmetrically with respect

to the Doppler profile) these two groups involve the same particles. For these particles,

assuming that A a = Ab , a - Wb = 2 A = 2 vk = v(k +k), we have

Ap = -2T1 T 2 2  11Va 2+ Vb 2 (12)

ab
Ap 2 2 = -2T 2 VaVbP 22  (13)

Thus, if V = V b , then ApI ab p1 oo. Hence, these very same particles experience
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a strong fluctuation in their inversion. This fluctuation is the result of a synchronism

effect: Note that for these particles, the total time derivative +t v z in (1) vanishes.

This means that the time variation of the driving term in Eq. 1, as viewed by the trav-

eling particle in its own frame of reference, is zero, the driving term is independent

of time and hence affects the pl1 2 of this particle maximally. This is true even though

the source, as viewed in the laboratory frame, is time- and space-dependent.

We shall now investigate the space-time dependence of the polarization density when

a small signal field is injected with the space-time dependence V exp j(wt+kz). Starting

with the perturbed value of P22' (9), we have for P 12' the component of pl 2 with the

space-time dependence exp j(wt+kz):

jVP2 2 + P22
p' 2 , v) = (14)

J [ -wol2 )+vk T

In addition to this component, there are cross-modulation components attributable to the

product of the probe-signal term in V12, and the space-time dependent terms in ApZ2'

The term of pl 2 with the space-time dependence exp j[(w+wa-ob)t-(ka+kb-k)z], which we

denote by p' 2 , has the amplitude

ab
jVA 2 2  (15)

p' = (15)

12 +ca-b- 02 - v(ka+kb-k) + T

In order to find the net polarization, we must integrate p'1 2 and p'12 over all velocities.

Ap22 peaks at the velocity v = A Wa/ka A wb/kb, when 0a = wb (k > 0). Let us compare
the magnitudes of the nonlinear contributions to the polarization, proportional to

f P 1 2 dv, at frequencies o and w + wa - wb' when w = +wb. We have

jVApoo

PSI 2 dv = dv 2 1-j(A ob-vk) + T

-jV dv 2 . (16)

At frequency w + wa - wb = a,' the polarization is proportional to
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pj2 dv=

ab

2
dv

= -jVVaV b Y dv
A -vk) + j(Aa -vk ) + 1

The simplest procedure, leading to an easy integration, is to assume

file for the velocity distribution
a Lorentzian pro-

o0 P(o) vP2 2 (v) = 2 c2 (o)Z] (18)

where v0 is the half-width of the velocity profile. We find for the nonlinear contribution
to f P'12 dv, using the residue theorem:

' T
P'12 dv = -j2V 1 22(0) V2+ 12

S 2

[1 vk
T 2

Similarly, for f P' 2 dv we find

S '~2 dv =

Assuming I Va
we have

F2 + v)

-VVaVbP22(0)

+ jAwa

Vb, T 1 T 2 , A >> 1/T 2 , and v k n [n 10 in the He-Ne laser],

dv 4 Va 2 kvoT 2p 2 (0)

P2 dv2 222
a

4VIVa 2 nT 2 2 (0)

(a 2)2
(A Wa)
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Va2 V P (0)
P' 2 dv P2 2()

2(Aw a)3

Thus

If P'2 dv l  1
12 18nd m TIf p'1 2 dvI a 2

The cross-modulated component of the polarization caused by the probe signal is less

than the polarization at the probe signal frequency in the ratio of the homogeneous to

the inhomogeneous linewidths.

Since w = wb and k = kb, the space-time dependence of the p'2-term is expj(w t-kaz).

An injected probe signal at frequency cob produces a component of polarization at fre-

quency wa . Thus, the gain at one frequency depends upon the magnitude of the signal

at another frequency. This is the type of interaction required for mode locking, and

self-pulsing in lasers.

H. A. Haus, E. E. Stark, Jr.
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B. PARAMETRIC EFFECTS IN THE HELIUM-NEON GAS LASER

This report deals with a parametric effect in the Helium-Neon gas laser. A signal

of a certain frequency is injected into the cavity of a laser in multimode operation. The

effect of this signal at a frequency symmetrically located with respect to the center of

the Doppler line of the laser is then studied.

It can be shown using the density matrix equations that when a signal is injected into

a multimode laser the output increases at the frequency of the injected signal and at the

frequency symmetrically located with respect to the center of the Doppler line. This

is in contradiction to the steady-state rate equation approach which predicts that the out-

put should be decreased at the symmetrically located frequency. A simplified analysis

using the density matrix approach was presented in Section VI-A of this report, using

only two countertraveling waves at two frequencies. A similar, but lengthier, analysis

using standing waves is presented in the author's thesis.1
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Experimentally a signal was injected from a single mode Helium-Neon laser into the
cavity of another longer Helium-Neon laser. This second laser was oscillating in sev-
eral different modes simultaneously. The frequency of operation of the first laser could

be varied by manually changing an external control. This frequency variable laser was
a Spectra-Physics Model 119. The other laser was built here at M. I. T. and had a
cavity length of 1. 1 meters while the mirror radii were 2 meters. A lens system was
designed to mode match the two resonant cavities. A Faraday, rotator was used to iso-
late the cavities from one another. The Spectra-Physics signal was injected into the
cavity of the long Helium-Neon laser and the combined output was directed into a
Spectra-Physics spectrum analyzer. The resultant was then displayed on an oscillo-
scope. The operating modes appear as spikes on the oscilloscope screen. The hori-
zontal position on the scope display was a measure of the frequency of the modes. The
experimental setup is shown in Fig. VI-1.

SPECTRA

PHYSICS FARADAY SPECTRUM
LASER ROTATOR LONG HELIUM-NEON LASER ANALYZER

MODE-MATCHING
LENSES

TO
OSCILLOSCOPE

Fig. VI-1. Experimental layout.

The intention was to manually vary the frequency of the Spectra-Physics laser until
it coincided with one of the modes of operation of the second laser. Then we could mon-
itor the output at that frequency and at the symmetrically located frequency with respect
to the center of the Doppler line of the second laser. This means of observation was
complicated because the "comb" of frequencies of the long laser displayed on the oscil-
loscope jumped back and forth very rapidly. Consequently, it was virtually impossible
to tell when the spike from the Spectra-Physics laser lined up with one of the spikes of
the long He-Ne laser. To circumvent this difficulty, we used the memory storage capa-
bility on the oscilloscope. The frequency of the Spectra-Physics laser was adjusted to
fall within the range swept out by the comb of the long He-Ne laser. Then the comb's
sweeping back and forth across the face of the oscilloscope was equivalent to varying
the frequency of the Spectra-Physics laser. When the spike of the Spectra-Physics
laser coincided with one mode of the second laser a sharp increase in the output
occurred. So, if there was such a coincidence it would show up on the oscilloscope
memory as a large spike rising above the normal envelope swept out by the trace
of the oscilloscope. Occasionally, not one but two spikes would appear which were
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(a) (b)

Fig. VI-2. Oscilloscope traces with (b) and without (a)

Spectra-Physics laser on.

(a) (b)

Fig. VI-3. Reproducibility check.
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symmetrically located on the Doppler-broadened line. This is evidence of the effect we

are studying.

Just such an occurrence is shown in Fig. VI-2. The trace on the right is with the

Spectra-Physics laser on and the one on the left is with it off. The large peak half a

box to the left of the center in Fig. VI-2b is that due to the Spectra-Physics laser.

The peak just to the right of center in Fig. VI-2b is considerably higher than the cor-

responding peak in Fig. VI-2a. This is an indication of the parametric effect and could

only be due to the presence of the Spectra-Physics laser signal.

The reproducibility of the time-averaged envelope is indicated in Fig. VI-3. Both

traces were done with the Spectra-Physics laser off.

For further experimental evidence of this effect and a more detailed theoretical

analysis one should consult the thesis upon which this report is based.

M. A. Guerra
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C. USE OF ADDITION THEOREMS FOR ELECTROMAGNETIC FIELD

SYNTHESIS ON CIRCULAR CYLINDERS AND SPHERES

1. Introduction

This report is concerned with the use of addition theorems for the synthesis of time-

harmonic electromagnetic field distributions on circular cylinders or spheres. By means

of addition theorems a field distribution on a circular cylinder or sphere can be synthe-

sized in terms of waves radiating from an eccentric center located inside. Solution of

this synthesis problem is important for the design and evaluation of focal region feed

antennas for circular-cylindrical or spherical metallic reflectors on a transmitting

basis.1 The design goal is a fan-beam or pencil-beam radiation pattern with a narrow

beamwidth and low sidelobes which can be steered by rotating the feed on a circular

arc. Use of the eccentric coordinate systems extends the transmitting synthesis

approach of Ricardi who employed concentric spherical coordinates. 2

The main result of this report is that the addition theorems provide exact synthesis

and analysis methods which can be implemented numerically; furthermore, these meth-

ods can yield estimates of the Q of an eccentric feed in terms of how well it synthesizes

a desired field distribution. Section 2 contains a detailed discussion of the circular-

cylindrical case and Section 3 contains a brief description of the spherical case.
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2. Synthesis of Circular-Cylindrical Waves by an Eccentric Feed

The addition theorem for Bessel functions provides an exact method to synthesize a

given field distribution on a circular cylinder as a sum of circular-cylindrical waves

radiating from an eccentric center located within the cylinder; the theorem also pro-

vides an exact method to analyze a field distribution on a circular cylinder which is pro-

duced by a given sum of circular-cylindrical waves radiating from an eccentric center

located within the cylinder. 3 The theorem determines restrictions on the size of the

cylinder, and displacement of the eccentric center, in order that the synthesis method

be valid.

A two-dimensional view of the geometry is shown in Fig. VI-4; the axes of the

eccentric cylinders, O and 0', are parallel to the z axis of a Cartesian coordinate sys-

tem and are separated by a distance d. The synthesis results are summarized as fol-

lows.

1. A field distribution consisting of a finite number of circular-cylindrical waves

radiating from O can be synthesized by an infinite sum of circular-cylindrical waves

radiating from an eccentric axis O'; this sum converges only outside a cylinder of con-

vergence for synthesis as shown in Fig. VI-4.

2. A field distribution consisting of a finite number of circular-cylindrical waves

radiating from O can be synthesized approximately to any degree of precision less than

100% by a finite sum of circular-cylindrical waves radiating from an eccentric axis O';

this sum converges everywhere except at O'.

ORIGINAL CIRCULAR Ez=aHp 2)(kr)ejPO ELECTRIC FIELD
CYLINDER

r P Ez SnH n 
2 )(kp)ejnO

ELECTRIC FIELD

S 0 d 0 o

ECCENTRIC CIRCULAR
CYLINDER

CYLINDER OF CONVERGENCE
FOR SYNTHESIS

CYLINDER OF CONVERGENCE
FOR ANALYSIS

Fig. VI-4. Geometry of concentric and eccentric coordinate systems.
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The previous statements are also true when O is taken as the eccentric axis with

respect to O'; this case is termed "analysis" since it will be employed to analyze the
approximate synthesis method. The previous statements hold separately for waves

whose electric field is polarized in the z direction, TE waves, and waves whose mag-

netic field is polarized in the z direction, TM waves. The exact method is written in
terms of the complex wave amplitudes as follows:

Synthesis Sn = apJpn(kd) (1)

p
-00

Analysis a = = S nJ (kd) (2)

n=-o

where Sn is the complex amplitude of the nth wave radiating from O', a is the complex
th

amplitude of the p wave radiating from O, J pn(kd) is a Bessel function of integral
order (p-n) and argument kd, and k is the propagation constant of free space. The elec-
tric field of TE waves radiating from O is given by

Ez = a H(2)(kr) ejpp (3)

p

and the electric field of TE waves radiating from O' is given by

00

E z = SnH (2)(kp) ejnO (4)

n= -oo

where H (2)(kr) denotes a Hankel function of the first kind of integral order p, and (r, c)
p

and (p, 0) are circular-cylindrical coordinates shown in Fig. VI-4. The addition theorem
shows that the fields expressed by Eqs. 3 and 4 are identical everywhere on and outside
a cylinder of convergence for synthesis as shown in Fig. VI-4, if Eq. 1 is satisfied for
all n; inside the cylinder of convergence Eq. 4 diverges. Therefore, in order to syn-
thesize a field distribution given by Eq. 3 exactly by waves radiating from an eccentric
center, the displacement of the center must be less than r/2

d < (r/2). (5)

An approximate synthesis procedure is obtained by choosing 2N + 1 terms of Eq. 4
whose amplitudes are given by Eq. 1

N

E z = SnHn (kp) e (6)

n=-N
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Equation 6 represents a field distribution which converges everywhere except at O';

therefore, for the approximate method Eq. 5 is replaced by the weaker restriction

d < r.

The degree to which Eq. 6 equals Eq. 3 can be found by applying the analysis relation,

Eq. 2, to 2N + 1 terms of Sn in order to compute the complex amplitude of the synthe-

sized waves a'

a'

n= -N

SJ (kd)

and compare the values with the desired a ; another comparison is the ratio of the power

kd =5

100
Lr

0
a 80

N

u 60

z
>- 40

o 20

Lu
n~

N=21

4 6 8 10 12 14 16 18

P, ORDER OF WAVE SYNTHESIZED

Per cent of power synthesized for a single
kd = 5 and N = 1, 5, 9, 13, 17, 21.

wave vs order for

carried by the synthesized waves Ps to the power carried by the desired waves, P , R,

where

R = 100(Ps/Po)% (9

and

Ps = (2/kZo) ISn 2
n= -N

W/M (10)
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Po = (2/kZo) ap 2 W/M. (11)

P

Zo is equal to the characteristic impedance of free space. For exact synthesis R = 100%.

R is plotted in Fig. VI-5 for the case of a single wave of order p radiating from O and
kd = 5; in order for R to be at least 98%, N must exceed kd + p. The Q of a feed that

synthesizes a finite number of circular-cylindrical waves radiating from O' is high if
the circumference per wavelength, (kp), of the smallest cylinder concentric with O' that
encloses the feed is less than the maximum order of the wave radiated, N. 4

3. Synthesis of Spherical Waves by an Eccentric Feed

The translational addition theorems for spherical vector waves provide an exact
method to synthesize a given realizable field distribution on a sphere in terms of a set
of spherical waves radiating from an eccentric center located within the sphere. 5 ' 6 The
results for the sphere are similar in all respects to those of the circular cylinder which
were presented above and will not be repeated. This section will be concerned only with
the restatement of Cruzan's results in a form appropriate for the synthesis problem.

The geometry is identical to that shown in Fig. VI-4; the eccentric coordinate system
is obtained by translating the original coordinate system parallel to itself a distance d
along the z axis. The spherical coordinates in the original system are defined by (r, 0, 4)
and in the eccentric system by (r', 0', 4). The addition theorem for spherical vector
waves is based on the addition theorem for spherical scalar waves

00

h (kr) Pm (cos 0) e j m  = A(m, v) h2)(kr') Pm (cos ') ejm % ,  (12)

v= 0

where h (2 ) is a spherical Hankel function of the first kind, Pm is an associated Legendren n
function. The coefficients A(m, v) can be obtained from the following integral which is
obtained by equating the far zone fields given by Eq. 12

.n-v T e-jkdcos O Pr (cos 0) Pm(cos 0) sin 0 de
A(m, v) = (13)

fO Pm(cos 0) sin 0 dO

or by means of the following series which involves the Wigner 3-j symbols (1 m2 13

00

A(m, v) = ~ n-v-P(2 p+l)( 2 v+l)j (kd)(-l)m  (n+m)!! (v-m) p n v) p n v

p=0 (n-m)! (+m)14) 0 0 0 0 m -m

(14)
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The spherical vector wave functions are given in terms of two vector wave functions Mmn
and N wheremn

(jm dPm(cos 0)
P= m(cos 0) 1 n I , hp(2) (kr) ejm (15)

mn sin8 n de n

kN = 7X M . (16)mn mn

The addition theorems which can be used to synthesize M and N are then givenmn mn
by

00oo rmn- mn0
M (r,, ) = (A mnM (r', 0',) + Bmn N (r, 0 ) (17)

mn my my my m
v=0

00

N (r, , AmnN (r' 0, + BmnN (r' 0 )), (18)
mn\ my my my my

v=0

where the complex wave coefficients are written in Cruzan' s notation and are explicitly

given by

mn k ((v+1)(v-m) v(v+m+l)
Amn = A(m, v) + k A(m, v-1) + 2v + 3 A(m, v+1) (19)m y 2v - 1 2v + 3

jkm
B m n - A(m, v). (20)mv v(v+l)

Relations (19) and (20) can be derived by equating the far-zone fields given by Eqs. 17

and 18 and by using the orthogonality relations of the M and N angular functions.mn mn
The addition theorems which are useful for analyzing waves radiating from the eccentric

center are obtained by interchanging primed and nonprimed coordinates in Eqs. 17 and

18 and replacing d by -d in Eq. 14.

Use of the addition theorem for spherical vector waves requires the computation of

A(m, v) by means of Eq. 13 or the series given by Eq. 14. The series is composed of

a finite number of nonzero terms because of special properties of the 3 -j symbols;

these can be evaluated using various recursion relations. 7

J. I. Glaser
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D. QUANTIZATION OF ELECTROMAGNETIC RADIATION FIELDS

IN MOVING UNIAXIAL MEDIA

Radiation fields in moving uniaxial media have been quantized without introducing

auxiliary potential functions. Hamiltonian and momentum operators are diagonalized

in momentum space and written in terms of annihilation and creation operators of the

photon state. It has been found that two types of photons corresponding to classical ordi-

nary and extraordinary waves will exist, and they are called "ordinary photons" and

"extraordinary photons." Physical interpretations of the various results are discussed

in a paper that has been submitted to the Journal of Applied Physics.

J. A. Kong
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