67 research outputs found

    A Measure of Segregation Based on Social Interactions

    Get PDF
    We develop an index of segregation based on two premises: (1) a measure of segregation should disaggregate to the level of individuals, and (2) an individual is more segregated the more segregated are the agents with whom she interacts. We present an index that satisfies (1) and (2) and that is based on agents' social interactions: the extent to which blacks interact with blacks, whites with whites, etc. We use the index to measure school and residential segregation. Using detailed data on friendship networks, we calculate levels of within-school racial segregation in a sample of U. S. schools. We also calculate residential segregation across major U. S. cities, using block-level data from the 2000 U. S. Census

    On the Measurement of Segregation

    Get PDF
    This paper develops a measure of segregation based on two premises: (1) a measure of segregation should disaggregate to the level of individuals, and (2) an individual is more segregated the more segregated are the agents with whom she interacts. Developing three desirable axioms that any segregation measure should satisfy, we prove that one and only one segregation index satisfies our three axioms, and the two aims mentioned above; which we coin the Spectral Segregation Index. We apply the index to two well-studied social phenomena: residential and school segregation. We calculate the extent of residential segregation across major US cities using data from the 2000 US Census. The correlation between the Spectral index and the commonly- used dissimilarity index is .42. Using detailed data on friendship networks, available in the National Longitudinal Study of Adolescent Health, we calculate the prevalence of within-school racial segregation. The results suggests that the percent of minority students within a school, commonly used as a substitute for a measure of in-school segregation, is a poor proxy for social interactions.segregation, networks, social interactions, school segregation, residential segregation

    Lifetimes of image-potential states on copper surfaces

    Full text link
    The lifetime of image states, which represent a key quantity to probe the coupling of surface electronic states with the solid substrate, have been recently determined for quantum numbers n6n\le 6 on Cu(100) by using time-resolved two-photon photoemission in combination with the coherent excitation of several states (U. H\"ofer et al, Science 277, 1480 (1997)). We here report theoretical investigations of the lifetime of image states on copper surfaces. We evaluate the lifetimes from the knowledge of the self-energy of the excited quasiparticle, which we compute within the GW approximation of many-body theory. Single-particle wave functions are obtained by solving the Schr\"odinger equation with a realistic one-dimensional model potential, and the screened interaction is evaluated in the random-phase approximation (RPA). Our results are in good agreement with the experimentally determined decay times.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let

    Self-energy of image states on copper surfaces

    Get PDF
    We report extensive calculations of the imaginary part of the electron self-energy in the vicinity of the (100) and (111) surfaces of Cu. The quasiparticle self-energy is computed by going beyond a free-electron description of the metal surface, either within the GW approximation of many-body theory or with inclusion, within the GWΓ\Gamma approximation, of short-range exchange-correlation effects. Calculations of the decay rate of the first three image states on Cu(100) and the first image state on Cu(111) are also reported, and the impact of both band structure and many-body effects on the electron relaxation process is discussed.Comment: 8 pages, 5 figures, to appear in Phys. Rev.

    Self-similarity, small-world, scale-free scaling, disassortativity, and robustness in hierarchical lattices

    Full text link
    In this paper, firstly, we study analytically the topological features of a family of hierarchical lattices (HLs) from the view point of complex networks. We derive some basic properties of HLs controlled by a parameter qq. Our results show that scale-free networks are not always small-world, and support the conjecture that self-similar scale-free networks are not assortative. Secondly, we define a deterministic family of graphs called small-world hierarchical lattices (SWHLs). Our construction preserves the structure of hierarchical lattices, while the small-world phenomenon arises. Finally, the dynamical processes of intentional attacks and collective synchronization are studied and the comparisons between HLs and Barab{\'asi}-Albert (BA) networks as well as SWHLs are shown. We show that degree distribution of scale-free networks does not suffice to characterize their synchronizability, and that networks with smaller average path length are not always easier to synchronize.Comment: 26 pages, 8 figure

    Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications

    Get PDF
    The success of new scientific areas can be assessed by their potential for contributing to new theoretical approaches and in applications to real-world problems. Complex networks have fared extremely well in both of these aspects, with their sound theoretical basis developed over the years and with a variety of applications. In this survey, we analyze the applications of complex networks to real-world problems and data, with emphasis in representation, analysis and modeling, after an introduction to the main concepts and models. A diversity of phenomena are surveyed, which may be classified into no less than 22 areas, providing a clear indication of the impact of the field of complex networks.Comment: 103 pages, 3 figures and 7 tables. A working manuscript, suggestions are welcome
    corecore