63 research outputs found
SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care
<p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p
Variations of endonasal anatomy: relevance for the endoscopic endonasal transsphenoidal approach
Contains fulltext :
87525.pdf (publisher's version ) (Closed access)BACKGROUND: The endoscopic endonasal transsphenoidal approach (EETA) to the pituitary is performed by ear, nose, and throat (ENT) surgeons in collaboration with neurosurgeons but also by neurosurgeons alone even though neurosurgeons have not been trained in rhinological surgery. PURPOSE: To register the frequency of endonasal anatomical variations and to evaluate whether these variations hinder the progress of EETA and require extra rhinological surgical skills. METHODS: A prospective cohort study of 185 consecutive patients receiving an EETA through a binostril approach was performed. All anatomical endonasal variations were noted and the relevance for the progress of surgery evaluated. RESULTS: In 48% of patients, anatomical variations were recognized, the majority of which were spinae septi and septum deviations. In 5% of patients, the planned binostril approach had to be converted into a mononostril approach; whereas in 18% of patients with an anatomical variation, a correction had to be performed. There was no difference between the ENT surgeon and the neurosurgeon performing the approach. Complications related to the endonasal phase of the surgery occurred in 3.8%. Fluoroscopy or electromagnetic navigation has been used during 6.5% of the surgeries. CONCLUSION: Although endonasal anatomical variations are frequent, they do not pose a relevant obstacle for EETA.1 juni 201
Pituitary insufficiency after operation of supratentorial intra- and extraaxial tumors outside of the sellarâparasellar region?
Recent studies investigating pituitary function after non-sellar brain tumor surgery showed that up to 38.2% of patients have pituitary insufficiency (PI). It has been assumed that the operation causes the PI, but preoperative hormone testing, which would have been necessary to prove this assumption, was not performed. The objective of this study is to answer the question if indeed microsurgery is the culprit of PI in patients with operatively treated non-sellar brain tumors. In this prospective trial, 54 patients with supratentorial non-sellar tumors were included. The basal levels of cortisol, prolactin, testosterone, estrogen, IGF-1, fT3, fT4, STH, TSH, ACTH, FSH, and LH were recorded preoperatively on days 1 and 7 after surgery. If basal hormone screening revealed an abnormality, a releasing hormone assay was performed. Before surgery, 24 of the 54 patients (44.4%) already had PI. Additional 25 patients showed either hypocortisolism or hypothyreoidism. As those patients had been pre-treated with dexamethasone and l-thyroxine, these findings were considered not to represent PI but drug effects. Hormone testing on days 1 and 7 after surgery revealed no changes. With 44.4% PI is a frequent finding in brain tumor patients already before surgery. The factors causing preoperative PI remain yet to be identified. The endocrine results after surgery are unchanged which rules out that surgery is the cause of PI
Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of Leishmania mexicana
Transketolase (TKT) is part of the non-oxidative branch of the pentose phosphate pathway (PPP). Here we describe the impact of removing this enzyme from the pathogenic protozoan Leishmania mexicana. Whereas the deletion had no obvious effect on cultured promastigote forms of the parasite, the Îtkt cells were not infective to mice. Îtkt promastigotes were more susceptible to oxidative stress and various leishmanicidal drugs than wild-type, and metabolomics analysis revealed profound changes to metabolism in these cells. In addition to changes consistent with those directly related to the role of TKT in the PPP, central carbon metabolism was substantially decreased, the cells consumed significantly less glucose, flux through glycolysis diminished, and production of the main end products of metabolism was decreased. Only minor changes in RNA abundance from genes encoding enzymes in central carbon metabolism, however, were detected although fructose-1,6-bisphosphate aldolase activity was decreased two-fold in the knock-out cell line. We also showed that the dual localisation of TKT between cytosol and glycosomes is determined by the C-terminus of the enzyme and by engineering different variants of the enzyme we could alter its sub-cellular localisation. However, no effect on the overall flux of glucose was noted irrespective of whether the enzyme was found uniquely in either compartment, or in both
- âŠ