11,156 research outputs found
Detector panels-micrometeoroid impact Patent
Development of large area micrometeoroid impact detector panel
Regge Poles in High-Energy Electron Scattering
The possibility that the photon is described by a Regge trajectory is considered, and the effect of this assumption on the analysis of electron-pion, electron-nucleon, and electron-helium scattering is examined in some detail. Partial-wave projections for the various amplitudes are made in the annihilation channel, and a multiparticle unitarity condition is formally imposed by use of the N/D matrix formulation. Since the photon does not have a fixed spin of one, the spin matrix structure is considerably more complicated than in the conventional theory. The amplitudes are written in terms of the Regge poles corresponding to the photon, ρ-ω meson, etc., and the resulting cross sections are given in the interesting high-energy limit. In contrast to the usual analysis, where form factors depend only on the momentum transfer, we find a larger number of independent functions which depend on the energy as well, however, in a characteristic manner. That is, the essential change due to the Regge behavior of the photon is an over-all nonintegral power of the energy occurring in the cross section. The effect of this factor can be experimentally tested and this possibility is discussed
Zero gravity tissue-culture laboratory
Hardware was developed for performing experiments to detect the effects that zero gravity may have on living human cells. The hardware is composed of a timelapse camera that photographs the activity of cell specimens and an experiment module in which a variety of living-cell experiments can be performed using interchangeable modules. The experiment is scheduled for the first manned Skylab mission
A polymorphic reconfigurable emulator for parallel simulation
Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described
Collisions of boosted black holes: perturbation theory prediction of gravitational radiation
We consider general relativistic Cauchy data representing two nonspinning,
equal-mass black holes boosted toward each other. When the black holes are
close enough to each other and their momentum is sufficiently high, an
encompassing apparent horizon is present so the system can be viewed as a
single, perturbed black hole. We employ gauge-invariant perturbation theory,
and integrate the Zerilli equation to analyze these time-asymmetric data sets
and compute gravitational wave forms and emitted energies. When coupled with a
simple Newtonian analysis of the infall trajectory, we find striking agreement
between the perturbation calculation of emitted energies and the results of
fully general relativistic numerical simulations of time-symmetric initial
data.Comment: 5 pages (RevTex 3.0 with 3 uuencoded figures), CRSR-107
Corotating and irrotational binary black holes in quasi-circular orbits
A complete formalism for constructing initial data representing black-hole
binaries in quasi-equilibrium is developed. Radiation reaction prohibits, in
general, true equilibrium binary configurations. However, when the timescale
for orbital decay is much longer than the orbital period, a binary can be
considered to be in quasi-equilibrium. If each black hole is assumed to be in
quasi-equilibrium, then a complete set of boundary conditions for all initial
data variables can be developed. These boundary conditions are applied on the
apparent horizon of each black hole, and in fact force a specified surface to
be an apparent horizon. A global assumption of quasi-equilibrium is also used
to fix some of the freely specifiable pieces of the initial data and to
uniquely fix the asymptotic boundary conditions. This formalism should allow
for the construction of completely general quasi-equilibrium black hole binary
initial data.Comment: 13 pages, no figures, revtex4; Content changed slightly to reflect
fact that regularized shift solutions do satisfy the isometry boundary
condition
Excision boundary conditions for black hole initial data
We define and extensively test a set of boundary conditions that can be
applied at black hole excision surfaces when the Hamiltonian and momentum
constraints of general relativity are solved within the conformal thin-sandwich
formalism. These boundary conditions have been designed to result in black
holes that are in quasiequilibrium and are completely general in the sense that
they can be applied with any conformal three-geometry and slicing condition.
Furthermore, we show that they retain precisely the freedom to specify an
arbitrary spin on each black hole. Interestingly, we have been unable to find a
boundary condition on the lapse that can be derived from a quasiequilibrium
condition. Rather, we find evidence that the lapse boundary condition is part
of the initial temporal gauge choice. To test these boundary conditions, we
have extensively explored the case of a single black hole and the case of a
binary system of equal-mass black holes, including the computation of
quasi-circular orbits and the determination of the inner-most stable circular
orbit. Our tests show that the boundary conditions work well.Comment: 23 pages, 23 figures, revtex4, corrected typos, added reference,
minor content changes including additional post-Newtonian comparison. Version
accepted by PR
Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasi-equilibrium?
We consider combining two important methods for constructing
quasi-equilibrium initial data for binary black holes: the conformal
thin-sandwich formalism and the puncture method. The former seeks to enforce
stationarity in the conformal three-metric and the latter attempts to avoid
internal boundaries, like minimal surfaces or apparent horizons. We show that
these two methods make partially conflicting requirements on the boundary
conditions that determine the time slices. In particular, it does not seem
possible to construct slices that are quasi-stationary and avoid physical
singularities and simultaneously are connected by an everywhere positive lapse
function, a condition which must obtain if internal boundaries are to be
avoided. Some relaxation of these conflicting requirements may yield a soluble
system, but some of the advantages that were sought in combining these
approaches will be lost.Comment: 8 pages, LaTeX2e, 2 postscript figure
Local and global properties of conformally flat initial data for black hole collisions
We study physical properties of conformal initial value data for single and
binary black hole configurations obtained using conformal-imaging and
conformal-puncture methods. We investigate how the total mass M_tot of a
dataset with two black holes depends on the configuration of linear or angular
momentum and separation of the holes. The asymptotic behavior of M_tot with
increasing separation allows us to make conclusions about an unphysical
``junk'' gravitation field introduced in the solutions by the conformal
approaches. We also calculate the spatial distribution of scalar invariants of
the Riemann tensor which determine the gravitational tidal forces. For single
black hole configurations, these are compared to known analytical solutions.
Spatial distribution of the invariants allows us to make certain conclusions
about the local distribution of the additional field in the numerical datasets
Numerical method for binary black hole/neutron star initial data: Code test
A new numerical method to construct binary black hole/neutron star initial
data is presented. The method uses three spherical coordinate patches; Two of
these are centered at the binary compact objects and cover a neighborhood of
each object; the third patch extends to the asymptotic region. As in the
Komatsu-Eriguchi-Hachisu method, nonlinear elliptic field equations are
decomposed into a flat space Laplacian and a remaining nonlinear expression
that serves in each iteration as an effective source. The equations are solved
iteratively, integrating a Green's function against the effective source at
each iteration. Detailed convergence tests for the essential part of the code
are performed for a few types of selected Green's functions to treat different
boundary conditions. Numerical computation of the gravitational potential of a
fluid source, and a toy model for a binary black hole field are carefully
calibrated with the analytic solutions to examine accuracy and convergence of
the new code. As an example of the application of the code, an initial data set
for binary black holes in the Isenberg-Wilson-Mathews formulation is presented,
in which the apparent horizons are located using a method described in Appendix
A.Comment: 19 pages, 18 figure
- …
