359 research outputs found

    Multi-objective optimization of gate location and processing conditions in injection molding using MOEAs: experimental assessment

    Get PDF
    The definition of the gate location in injection molding is one of the most important factors in achieving dimensionally accuracy of the parts. This paper presents an optimization methodology for addressing this problem based on a Multi-objective Evolutionary Algorithm (MOEA). The algorithm adopted here is named Reduced Pareto Set Genetic Algorithm (RPSGA) and was used to create a balanced filling pattern using weld line characterization. The optimization approach proposed in this paper is an integration of evolutionary algorithms with Computer-Aided Engineering (CAE) software (Autodesk Moldflow Plastics software). The performance of the proposed optimization methodology was illustrated with an example consisting in the injection of a rectangular part with a non-symmetrical hole. The numerical results were experimentally assessed. Physical meaning was obtained which guaranteed a successful process optimization.This work was supported by the Portuguese Fundação para a Ciência e Tecnologia under grant SFRH/BD/28479/2006 and IPC/I3N – Institute for Polymers and Composites, University of Minho.info:eu-repo/semantics/publishedVersio

    Multiple ITS Copies Reveal Extensive Hybridization within Rheum (Polygonaceae), a Genus That Has Undergone Rapid Radiation

    Get PDF
    During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybridization can be detected in incongruence between phylogenies derived from different markers, or from the presence of two divergent versions of a nuclear marker such as ITS within one individual.In this study, we cloned and sequenced ITS regions for 30 species of the genus Rheum, and compared them with a cpDNA phylogeny. Seven species contained two divergent copies of ITS that resolved in different clades from one another in each case, indicating hybridization events too recent for concerted evolution to have homogenised the ITS sequences. Hybridization was also indicated in at least two further species via incongruence in their position between ITS and cpDNA phylogenies. None of the ITS sequences present in these nine species matched those detected in any other species, which provides tentative evidence against recent introgression as an explanation. Rheum globulosum, previously indicated by cpDNA to represent an independent origin of decumbent habit, is indicated by ITS to be part of clade of decumbent species, which acquired cpDNA of another clade via hybridization. However decumbent and glasshouse morphology are confirmed to have arisen three and two times, respectively.These findings suggested that hybridization among QTP species of Rheum has been extensive, and that a role of hybridization in diversification of Rheum requires investigation

    What explains ethnic organizational violence? Evidence from Eastern Europe and Russia

    Get PDF
    Why do some ethnopolitical organizations use violence? Research on substate violence often uses the state level of analysis, or only analyzes groups that are already violent. Using a resource mobilization framework drawn from a broad literature, we test hypotheses with new data on hundreds of violent and non-violent ethnopolitical organizations in Eastern Europe and Russia. Our study finds interorganizational competition, state repression and strong group leadership associated with organizational violence. Lack of popularity and holding territory are also associated with violence. We do not find social service provision positively related to violence, which contrasts with research on the Middle East

    What drives the 'August effect'?: an observational study of the effect of junior doctor changeover on out of hours work

    Get PDF
    Objective: To investigate whether measurements of junior doctor on-call workload and performance can clarify the mechanisms underlying the increase in morbidity and mortality seen after junior doctor changeover: the ‘August effect’. Design: Quantitative retrospective observational study of routinely collected data on junior doctor workload. Setting: Two large teaching hospitals in England. Participants: Task level data from a wireless out of hours system (n = 29,885 requests) used by medical staff, nurses, and allied health professionals. Main outcome measures: Number and type of tasks requested by nurses, time to completion of tasks by junior doctors. Results: There was no overall change in the number of tasks requested by nurses out of hours around the August changeover (median requests per hour 15 before and 14 after, p = 0.46). However, the number of tasks classified as urgent was greater (p = 0.016) equating to five more urgent tasks per day. After changeover, doctors took less time to complete tasks overall due to a reduction in time taken for routine tasks (median 74 vs. 66 min; p = 3.9 × 10−9). Conclusion: This study suggests that the ‘August effect’ is not due to new junior doctors completing tasks more slowly or having a greater workload. Further studies are required to investigate the causes of the increased number of urgent tasks seen, but likely factors are errors, omissions, and poor prioritization. Thus, improved training and quality control has the potential to address this increased duration of unresolved patient risk. The study also highlights the potential of newer technologies to facilitate quantitative study of clinical activity

    Perilipin 2 (PLIN2)-Deficiency Does Not Increase Cholesterol-Induced Toxicity in Macrophages

    Get PDF
    Interventions on macrophages/foam cells to redirect intracellular cholesterol towards efflux pathways could become a very valuable addition to our therapeutic arsenal against atherosclerosis. However, certain manipulations of the cholesteryl ester cycle, such as the inhibition of ACAT1, an ER-resident enzyme that re-esterifies cholesterol, are not well tolerated. Previously we showed that targeting perilipin-2 (PLIN2), a major lipid droplet (LD)-associated protein in macrophages, prevents foam cell formation and protects against atherosclerosis. Here we have assessed the tolerance of PLIN2-deficient bone marrow derived macrophages (BMM) to several lipid loading conditions similar to the found during atherosclerosis development, including exposure to modified low-density lipoprotein (mLDL) and 7-ketocholesterol (7-KC), a free cholesterol (FC) metabolite, in media with or without cholesterol acceptors. BMM isolated from mice that do or do not express PLIN2 were tested for apoptosis (TUNEL and cleaved caspase-3), ER stress (CHOP induction and XBP-1 splicing), and inflammation (TNF-α and IL-6 mRNA levels). Like in other cell types, PLIN2 deficiency impairs LD buildup in BMM. However, while most stress parameters were elevated in macrophages under ACAT inhibition and 7-KC loading, PLIN2 inactivation was well tolerated. The data support the safety of targeting PLIN2 to prevent foam cell formation and atherosclerosis

    Effects of Interleukin-10 Polymorphisms, Helicobacter pylori Infection, and Smoking on the Risk of Noncardia Gastric Cancer

    Get PDF
    OBJECTIVE: Both variations in the interleukin-10 (IL10) gene and environmental factors are thought to influence inflammation and gastric carcinogenesis. Therefore, we investigated the associations between IL10 polymorphisms, Helicobacter pylori (H. pylori) infection, and smoking in noncardia gastric carcinogenesis in Koreans. METHODS: We genotyped three promoter polymorphisms (-1082A>G, -819T>C, and -592 A>C) of IL10 in a case-control study of 495 noncardia gastric cancer patients and 495 sex- and age-matched healthy controls. Multiple logistic regression models were used to detect the effects of IL10 polymorphisms, H. pylori infection, and smoking on the risk of gastric cancer, which was stratified by the histological type of gastric cancer. RESULTS: The IL10-819C and -592C alleles were found to have complete linkage disequilibrium, and all three IL10 polymorphisms were associated with an increased risk of intestinal-type noncardia gastric cancer. These associations were observed only in H. pylori-positive subjects and current smokers. A statistically significant interaction between the IL10-592 genotype and H. pylori infection on the risk of intestinal-type gastric cancer was observed (P for interaction  = 0.047). In addition, H. pylori-positive smokers who were carriers of either the IL10-1082G (OR [95% CI]  = 17.76 [6.17-51.06]) or the -592C (OR [95% CI]  = 8.37 [2.79-25.16]) allele had an increased risk of intestinal-type gastric cancer compared to H. pylori-negative nonsmokers homozygous for IL10-1082A and -592A, respectively. The interaction between the IL10-1082 polymorphism and the combined effects of H. pylori infection and smoking tended towards significance (P for interaction  = 0.080). CONCLUSIONS: Inflammation-related genetic variants may interact with H. pylori infection and smoking to increase the risk of noncardia gastric cancer, particularly the intestinal-type. These findings may be helpful in identifying individuals at an increased risk for developing noncardia gastric cancer

    Optimisation of UAVs‐SfM data collection in aeolian landform morphodynamics : a case study from the Gonghe Basin, China

    Get PDF
    UAVs‐SfM (Unmanned Aerial Vehicles‐ Structure from Motion) systems can generate high‐resolution 3D topographic models of aeolian landforms. To explore the optimisation of UAVs‐SfM for use in aeolian landform morphodynamics, this study tested flight parameters for two contrasting aeolian landform areas (free dune and blowout) to assess the 3D reconstruction accuracy of the UAVs survey compared with field point measurements using differential RTK‐GPS (Real‐time Kinematic‐Global Positioning System). The results reveal the optimum UAVs‐SfM flight set‐up at the free‐dune site was: flying height = 74 m, camera tilt angle = ‐90°, photo overlap ratio = 85%/70% (heading/sideways). The horizontal/vertical location error was around 0.028~0.055 m and 0.053‐0.069 m respectively, and a point cloud density of 463/m3 was found to generate a clear texture using these flying parameters. For the <20m deep blowout the optimum set‐up with highest accuracy and the lowest cliff texture distortion was: flying height = 74 m combined camera tilt angle = ‐90° and ‐60°, photo overlap ratio = 85%/70% (heading/sideways), and an evenly distributed GCPs (Ground Control Points) density of 42/km2 using these flying parameters. When the depth of the blowouts exceeded 40 m, the optimum flight/survey parameters changed slightly to account for more challenging cliff texture generation: flying height = 80 m (with ‐90° and ‐60°combined camera tilt angle), GCPs density = 63/km2 to generate horizontal and vertical location error of 0.024 m and 0.050 m respectively, and point cloud density of 2597.11/m3. The main external factors that affect the successful 3D reconstruction of aeolian landforms using UAVs‐SfM are the weather conditions, manipulation errors, and instrument system errors. The UAVs‐SfM topographic monitoring results demonstrate that UAVs provide a viable and robust means for aeolian landform morphodynamics monitoring. Importantly, the rapid and high precision 3D reconstruction processes were significantly advanced using the optimal flight parameters reported here
    corecore