15 research outputs found

    Building information modelling – A novel parametric modeling approach based on 3D surveys of historic architecture

    Get PDF
    Building Information Modelling (BIM) appears to be the best answer to simplify the traditional process of design, construction, management and maintenance. On the other hand, the intricate reality of the built heritage and the growing need to represent the actual geometry using 3D models collide with the new paradigms of complexity and accuracy, opening a novel operative perspective for restoration and conservation. The management of complexity through BIM requires a new management approach focused on the development of improve the environmental impact cost, reduction and increase in productivity and efficiency the Architecture, Engineering and Construction (AEC) Industry. This structure is quantifiable in morphological and typical terms by establishing levels of development and detail (LoDs) and changes of direction (ReversLoDs) to support the different stages of life cycle (LCM). Starting from different experiences in the field of HBIM, this research work proposes a dynamic parametric modeling approach that involves the use of laser scanning, photogrammetric data and advanced modelling for HBIM

    Measurement of the W-boson mass in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8 × 106 candidates in the W → μν channel and 5.9 × 106 candidates in the W → eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW = 80370 ± 7 (stat.) ± 11(exp. syst.) ± 14 (mod. syst.) MeV = 80370 ± 19 MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W− bosons yields mW+ − mW− = − 29 ± 28 MeV

    Measurement of the W-boson mass in pp collisions at s√=7TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8×106 candidates in the W→μν channel and 5.9×106 candidates in the W→eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW=80370=80370±7 (stat.)±11(exp. syst.)±14 (mod. syst.) MeV±19MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W− bosons yields mW+−mW−=−29±28 MeV

    Measurement of the W-boson mass in pp collisions at s√=7TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8×106 candidates in the W→μν channel and 5.9×106 candidates in the W→eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW=80370=80370±7 (stat.)±11(exp. syst.)±14 (mod. syst.) MeV±19MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W− bosons yields mW+−mW−=−29±28 MeV

    Disaster management

    No full text
    © Springer International Publishing AG 2018. Natural disasters, whether of meteorological origin such as cyclones, floods, tornadoes and droughts or of having geological nature such as earthquakes and volcanoes, are well known for their devastating impacts on human life, economy and environment, and are also formidable physical constraints in our overall efforts to develop and utilize the natural resources on a sustainable basis (Jayaraman, Chandrasekhar, Rao, Acra Astronaut 40(2–8):291–325, 1997, [1])
    corecore