3,313 research outputs found

    The role of beak shape in octopodid taxonomy

    Get PDF
    Beak shapes in nine species of Southern Ocean octopodids were measured using seven size-standardized ratios. The results were analysed using principal component analysis and discriminant function analysis and showthat beak shape may be used as a taxonomic character to distinguish between genera, but not between species. Stepwise discriminant function analysis indicated that all seven ratios were required to maximize discrimination between beaks. A phenogram constructed from a matrix of Mahalanobis distances differed from a dendrogram produced from genetic data. This suggests that, although useful for discrimination, beak morphology is probably not suitable for constructing phylogenies

    Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    Get PDF
    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques

    Slightly generalized Generalized Contagion: Unifying simple models of biological and social spreading

    Full text link
    We motivate and explore the basic features of generalized contagion, a model mechanism that unifies fundamental models of biological and social contagion. Generalized contagion builds on the elementary observation that spreading and contagion of all kinds involve some form of system memory. We discuss the three main classes of systems that generalized contagion affords, resembling: simple biological contagion; critical mass contagion of social phenomena; and an intermediate, and explosive, vanishing critical mass contagion. We also present a simple explanation of the global spreading condition in the context of a small seed of infected individuals.Comment: 8 pages, 5 figures; chapter to appear in "Spreading Dynamics in Social Systems"; Eds. Sune Lehmann and Yong-Yeol Ahn, Springer Natur

    Corrected overlap weight and clustering coefficient

    Full text link
    We discuss two well known network measures: the overlap weight of an edge and the clustering coefficient of a node. For both of them it turns out that they are not very useful for data analytic task to identify important elements (nodes or links) of a given network. The reason for this is that they attain their largest values on maximal subgraphs of relatively small size that are more probable to appear in a network than that of larger size. We show how the definitions of these measures can be corrected in such a way that they give the expected results. We illustrate the proposed corrected measures by applying them on the US Airports network using the program Pajek.Comment: The paper is a detailed and extended version of the talk presented at the CMStatistics (ERCIM) 2015 Conferenc

    Multilayer metamaterial absorbers inspired by perfectly matched layers

    Get PDF
    We derive periodic multilayer absorbers with effective uniaxial properties similar to perfectly matched layers (PML). This approximate representation of PML is based on the effective medium theory and we call it an effective medium PML (EM-PML). We compare the spatial reflection spectrum of the layered absorbers to that of a PML material and demonstrate that after neglecting gain and magnetic properties, the absorber remains functional. This opens a route to create electromagnetic absorbers for real and not only numerical applications and as an example we introduce a layered absorber for the wavelength of 88~μ\mum made of SiO2_2 and NaCl. We also show that similar cylindrical core-shell nanostructures derived from flat multilayers also exhibit very good absorptive and reflective properties despite the different geometry

    Statistically validated networks in bipartite complex systems

    Get PDF
    Many complex systems present an intrinsic bipartite nature and are often described and modeled in terms of networks [1-5]. Examples include movies and actors [1, 2, 4], authors and scientific papers [6-9], email accounts and emails [10], plants and animals that pollinate them [11, 12]. Bipartite networks are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set. When one constructs a projected network with nodes from only one set, the system heterogeneity makes it very difficult to identify preferential links between the elements. Here we introduce an unsupervised method to statistically validate each link of the projected network against a null hypothesis taking into account the heterogeneity of the system. We apply our method to three different systems, namely the set of clusters of orthologous genes (COG) in completely sequenced genomes [13, 14], a set of daily returns of 500 US financial stocks, and the set of world movies of the IMDb database [15]. In all these systems, both different in size and level of heterogeneity, we find that our method is able to detect network structures which are informative about the system and are not simply expression of its heterogeneity. Specifically, our method (i) identifies the preferential relationships between the elements, (ii) naturally highlights the clustered structure of investigated systems, and (iii) allows to classify links according to the type of statistically validated relationships between the connected nodes.Comment: Main text: 13 pages, 3 figures, and 1 Table. Supplementary information: 15 pages, 3 figures, and 2 Table

    High resolution dynamical mapping of social interactions with active RFID

    Get PDF
    In this paper we present an experimental framework to gather data on face-to-face social interactions between individuals, with a high spatial and temporal resolution. We use active Radio Frequency Identification (RFID) devices that assess contacts with one another by exchanging low-power radio packets. When individuals wear the beacons as a badge, a persistent radio contact between the RFID devices can be used as a proxy for a social interaction between individuals. We present the results of a pilot study recently performed during a conference, and a subsequent preliminary data analysis, that provides an assessment of our method and highlights its versatility and applicability in many areas concerned with human dynamics

    Suicide ideation of individuals in online social networks

    Full text link
    Suicide explains the largest number of death tolls among Japanese adolescents in their twenties and thirties. Suicide is also a major cause of death for adolescents in many other countries. Although social isolation has been implicated to influence the tendency to suicidal behavior, the impact of social isolation on suicide in the context of explicit social networks of individuals is scarcely explored. To address this question, we examined a large data set obtained from a social networking service dominant in Japan. The social network is composed of a set of friendship ties between pairs of users created by mutual endorsement. We carried out the logistic regression to identify users' characteristics, both related and unrelated to social networks, which contribute to suicide ideation. We defined suicide ideation of a user as the membership to at least one active user-defined community related to suicide. We found that the number of communities to which a user belongs to, the intransitivity (i.e., paucity of triangles including the user), and the fraction of suicidal neighbors in the social network, contributed the most to suicide ideation in this order. Other characteristics including the age and gender contributed little to suicide ideation. We also found qualitatively the same results for depressive symptoms.Comment: 4 figures, 9 table

    Atmospheric emissions from the deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate

    Get PDF
    The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (∼258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (∼33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (∼14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills. Copyright 2011 by the American Geophysical Union
    • …
    corecore