39 research outputs found

    Using matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling in order to predict clinical outcomes of patients with heart failure

    Get PDF
    Background Current risk prediction models in heart failure (HF) including clinical characteristics and biomarkers only have moderate predictive value. The aim of this study was to use matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) profiling to determine if a combination of peptides identified with MALDI-MS will better predict clinical outcomes of patients with HF. Methods A cohort of 100 patients with HF were recruited in the biomarker discovery phase (50 patients who died or had a HF hospital admission vs. 50 patients who did not have an event). The peptide extraction from plasma samples was performed using reversed phase C18. Then samples were analysed using MALDI-MS. A multiple peptide biomarker model was discovered that was able to predict clinical outcomes for patients with HF. Finally, this model was validated in an independent cohort with 100 patients with HF. Results After normalisation and alignment of all the processed spectra, a total of 11,389 peptides (m/z) were detected using MALDI-MS. A multiple biomarker model was developed from 14 plasma peptides that was able to predict clinical outcomes in HF patients with an area under the receiver operating characteristic curve (AUC) of 1.000 (p = 0.0005). This model was validated in an independent cohort with 100 HF patients that yielded an AUC of 0.817 (p = 0.0005) in the biomarker validation phase. Addition of this model to the BIOSTAT risk prediction model increased the predictive probability for clinical outcomes of HF from an AUC value of 0.643 to an AUC of 0.823 (p = 0.0021). Moreover, using the prediction model of fourteen peptides and the composite model of the multiple biomarker of fourteen peptides with the BIOSTAT risk prediction model achieved a better predictive probability of time-to-event in prediction of clinical events in patients with HF (p = 0.0005). Conclusions The results obtained in this study suggest that a cluster of plasma peptides using MALDI-MS can reliably predict clinical outcomes in HF that may help enable precision medicine in HF

    Assessing the Effects of Responsible Leadership and Ethical Conflict on Behavioral Intention

    Get PDF
    [[abstract]]This study develops a research model that elaborates how responsible leadership and ethical conflict influence employees from the perspectives of role theory and attachment theory. Its empirical results reveal that turnover intention indirectly relates to ethical conflict and responsible leadership via the mediating mechanisms of organizational identification and organizational uncertainty. At the same time, helping intention indirectly relates to ethical conflict and responsible leadership only through organizational identification. Finally, the managerial implications for international business and research limitations based on the empirical results are discussed.[[notice]]補正完

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF

    Multiomics Analysis Provides Novel Pathways Related to Progression of Heart Failure

    No full text
    Background: Despite major advances in pharmacological treatment for patients with heart failure, residual mortality remains high. This suggests that important pathways are not yet targeted by current heart failure therapies. Objectives: We sought integration of genetic, transcriptomic, and proteomic data in a large cohort of patients with heart failure to detect major pathways related to progression of heart failure leading to death. Methods: We used machine learning methodology based on stacked generalization framework and gradient boosting algorithms, using 54 clinical phenotypes, 403 circulating plasma proteins, 36,046 transcript expression levels in whole blood, and 6 million genomic markers to model all-cause mortality in 2,516 patients with heart failure from the BIOSTAT-CHF (Systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure) study. Results were validated in an independent cohort of 1,738 patients. Results: The mean age of the patients was 70 years (Q1-Q3: 61-78 years), 27% were female, median N-terminal pro–B-type natriuretic peptide was 4,275 ng/L (Q1-Q3: 2,360-8,486 ng/L), and 7% had heart failure with preserved ejection fraction. During a median follow-up of 21 months, 657 (26%) of patients died. The 4 major pathways with a significant association to all-cause mortality were: 1) the PI3K/Akt pathway; 2) the MAPK pathway; 3) the Ras signaling pathway; and 4) epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results were validated in an independent cohort of 1,738 patients. Conclusions: A systems biology approach integrating genomic, transcriptomic, and proteomic data identified 4 major pathways related to mortality. These pathways are related to decreased activation of the cardioprotective ERBB2 receptor, which can be modified by neuregulin

    An insight into intestinal mucosal microbiota disruption after stroke

    No full text
    Recent work from our laboratory has provided evidence that indicates selective bacterial translocation from the host gut microbiota to peripheral tissues (i.e. lung) plays a key role in the development of post-stroke infections. Despite this, it is currently unknown whether mucosal bacteria that live on and interact closely with the host intestinal epithelium contribute in regulating bacterial translocation after stroke. Here, we found that the microbial communities within the mucosa of gastrointestinal tract (GIT) were significantly different between sham-operated and post-stroke mice at 24 h following surgery. The differences in microbiota composition were substantial in all sections of the GIT and were significant, even at the phylum level. The main characteristics of the stroke-induced shift in mucosal microbiota composition were an increased abundance of Akkermansia muciniphila and an excessive abundance of clostridial species. Furthermore, we analysed the predicted functional potential of the altered mucosal microbiota induced by stroke using PICRUSt and revealed significant increases in functions associated with infectious diseases, membrane transport and xenobiotic degradation. Our findings revealed stroke induces far-reaching and robust changes to the intestinal mucosal microbiota. A better understanding of the precise molecular events leading up to stroke-induced mucosal microbiota changes may represent novel therapy targets to improve patient outcomes
    corecore