755 research outputs found

    The origin of life: chemical evolution of a metabolic system in a mineral honeycomb?

    Get PDF
    For the RNA-world hypothesis to be ecologically feasible, selection mechanisms acting on replicator communities need to be invoked and the corresponding scenarios of molecular evolution specified. Complementing our previous models of chemical evolution on mineral surfaces, in which selection was the consequence of the limited mobility of macromolecules attached to the surface, here we offer an alternative realization of prebiotic group-level selection: the physical encapsulation of local replicator communities into the pores of the mineral substrate. Based on cellular automaton simulations we argue that the effect of group selection in a mineral honeycomb could have been efficient enough to keep prebiotic ribozymes of different specificities and replication rates coexistent, and their metabolic cooperation protected from extensive molecular parasitism. We suggest that mutants of the mild parasites persistent in the metabolic system can acquire useful functions such as replicase activity or the production of membrane components, thus opening the way for the evolution of the first autonomous protocells on Earth

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    The Evolution of Enzyme Specificity in the Metabolic Replicator Model of Prebiotic Evolution

    Get PDF
    The chemical machinery of life must have been catalytic from the outset. Models of the chemical origins have attempted to explain the ecological mechanisms maintaining a minimum necessary diversity of prebiotic replicator enzymes, but little attention has been paid so far to the evolutionary initiation of that diversity. We propose a possible first step in this direction: based on our previous model of a surface-bound metabolic replicator system we try to explain how the adaptive specialization of enzymatic replicator populations might have led to more diverse and more efficient communities of cooperating replicators with two different enzyme activities. The key assumptions of the model are that mutations in the replicator population can lead towards a) both of the two different enzyme specificities in separate replicators: efficient “specialists” or b) a “generalist” replicator type with both enzyme specificities working at less efficiency, or c) a fast-replicating, non-enzymatic “parasite”. We show that under realistic trade-off constraints on the phenotypic effects of these mutations the evolved replicator community will be usually composed of both types of specialists and of a limited abundance of parasites, provided that the replicators can slowly migrate on the mineral surface. It is only at very weak trade-offs that generalists take over in a phase-transition-like manner. The parasites do not seriously harm the system but can freely mutate, therefore they can be considered as pre-adaptations to later, useful functions that the metabolic system can adopt to increase its own fitness

    Intelligent Monitoring System for Bird Behavior Study

    Get PDF
    Until now, the best way to obtain relevant information about the behaviour of animals is capturing them. However, the procedure to capture individuals cause them stress and introduces an effect on the measurement that can affect the behaviour of the animals. To solve this problems this paper describes a novel intelligent motoring system for birds breeding in nest boxes. This system is based in a network of smart-nest boxes that allows access to the acquired data all over the world through internet. A prototype of the proposed system has been implemented for the evaluation of a lesser kestrel breeding colony in Southern Spain. This prototype has offered in a short time more valuable information that several years of manual captures. This prototype has demonstrated that the proposed system allows short and log time animal behaviour evaluation without interferences or causing stress.Junta de Andalucía P06-RNM-01712Junta de Andalucía P06-RNM-04588Junta de Andalucía P07-TIC-02476Junta de Andalucía TIC-570

    OrgConv: detection of gene conversion using consensus sequences and its application in plant mitochondrial and chloroplast homologs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ancestry of mitochondria and chloroplasts traces back to separate endosymbioses of once free-living bacteria. The highly reduced genomes of these two organelles therefore contain very distant homologs that only recently have been shown to recombine inside the mitochondrial genome. Detection of gene conversion between mitochondrial and chloroplast homologs was previously impossible due to the lack of suitable computer programs. Recently, I developed a novel method and have, for the first time, discovered recurrent gene conversion between chloroplast mitochondrial genes. The method will further our understanding of plant organellar genome evolution and help identify and remove gene regions with incongruent phylogenetic signals for several genes widely used in plant systematics. Here, I implement such a method that is available in a user friendly web interface.</p> <p>Results</p> <p><monospace>OrgConv</monospace> (<b>Org</b>anellar <b>Conv</b>ersion) is a computer package developed for detection of gene conversion between mitochondrial and chloroplast homologous genes. <monospace>OrgConv</monospace> is available in two forms; source code can be installed and run on a Linux platform and a web interface is available on multiple operating systems. The input files of the feature program are two multiple sequence alignments from different organellar compartments in FASTA format. The program compares every examined sequence against the consensus sequence of each sequence alignment rather than exhaustively examining every possible combination. Making use of consensus sequences significantly reduces the number of comparisons and therefore reduces overall computational time, which allows for analysis of very large datasets. Most importantly, with the significantly reduced number of comparisons, the statistical power remains high in the face of correction for multiple tests.</p> <p>Conclusions</p> <p>Both the source code and the web interface of <monospace>OrgConv</monospace> are available for free from the <monospace>OrgConv</monospace> website <url>http://www.indiana.edu/~orgconv</url>. Although <monospace>OrgConv</monospace> has been developed with main focus on detection of gene conversion between mitochondrial and chloroplast genes, it may also be used for detection of gene conversion between any two distinct groups of homologous sequences.</p

    Integrating personality research and animal contest theory: aggressiveness in the green swordtail <i>Xiphophorus helleri</i>

    Get PDF
    &lt;p&gt;Aggression occurs when individuals compete over limiting resources. While theoretical studies have long placed a strong emphasis on context-specificity of aggression, there is increasing recognition that consistent behavioural differences exist among individuals, and that aggressiveness may be an important component of individual personality. Though empirical studies tend to focus on one aspect or the other, we suggest there is merit in modelling both within-and among-individual variation in agonistic behaviour simultaneously. Here, we demonstrate how this can be achieved using multivariate linear mixed effect models. Using data from repeated mirror trials and dyadic interactions of male green swordtails, &lt;i&gt;Xiphophorus helleri&lt;/i&gt;, we show repeatable components of (co)variation in a suite of agonistic behaviour that is broadly consistent with a major axis of variation in aggressiveness. We also show that observed focal behaviour is dependent on opponent effects, which can themselves be repeatable but were more generally found to be context specific. In particular, our models show that within-individual variation in agonistic behaviour is explained, at least in part, by the relative size of a live opponent as predicted by contest theory. Finally, we suggest several additional applications of the multivariate models demonstrated here. These include testing the recently queried functional equivalence of alternative experimental approaches, (e. g., mirror trials, dyadic interaction tests) for assaying individual aggressiveness.&lt;/p&gt

    CdSe Quantum Dot (QD)-Induced Morphological and Functional Impairments to Liver in Mice

    Get PDF
    Quantum dots (QDs), as unique nanoparticle probes, have been used in in vivo fluorescence imaging such as cancers. Due to the novel characteristics in fluorescence, QDs represent a family of promising substances to be used in experimental and clinical imaging. Thus far, the toxicity and harmful health effects from exposure (including environmental exposure) to QDs are not recognized, but are largely concerned by the public. To assess the biological effects of QDs, we established a mouse model of acute and chronic exposure to QDs. Results from the present study suggested that QD particles could readily spread into various organs, and liver was the major organ for QD accumulation in mice from both the acute and chronic exposure. QDs caused significant impairments to livers from mice with both acute and chronic QD exposure as reflected by morphological alternation to the hepatic lobules and increased oxidative stress. Moreover, QDs remarkably induced the production of intracellular reactive oxygen species (ROS) along with cytotoxicity, as characterized by a significant increase of the malondialdehyde (MDA) level within hepatocytes. However, the increase of the MDA level in response to QD treatment could be partially blunted by the pre-treatment of cells with beta-mercaptoethanol (β-ME). These data suggested ROS played a crucial role in causing oxidative stress-associated cellular damage from QD exposure; nevertheless other unidentified mediators might also be involved in QD-mediated cellular impairments. Importantly, we demonstrated that the hepatoxicity caused by QDs in vivo and in vitro was much greater than that induced by cadmium ions at a similar or even a higher dose. Taken together, the mechanism underlying QD-mediated biological influences might derive from the toxicity of QD particles themselves, and from free cadmium ions liberated from QDs as well

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Results of isolated posterolateral corner reconstruction

    Get PDF
    BACKGROUND: Isolated posterolateral corner (PLC) tears are relatively rare events. Various surgical techniques to treat posterolateral knee instability have been described; because surgical results are linked to cruciate reconstructions it has been difficult to date to define whether one surgical procedure has better prognosis than another. The goal of this study is to determine the clinical outcome of PLC reconstruction following fibular-based technique. MATERIALS AND METHODS: We retrospectively evaluated a case series of patients who received isolated PLC reconstruction between March 2005 and January 2007. Ten patients were surgically treated for isolated injuries and were available for follow-up; average patient age was 27.4 years (range 16-47 years). All patients were treated following the fibular-based technique: double femoral tunnel was performed in six patients, while in the remaining four patients, the reconstruction of the PLC was performed with a single femoral tunnel. Six patients had semitendinosus allograft and four had semitendinosus autograft. All patients had the same evaluation and the same rehabilitation protocol. RESULTS: Mean follow-up was 27.5 months (range 18-40 months). Mean range of motion (ROM) was 143.5 degrees for flexion (range 135-150 degrees) and 0.5 degrees for extension (range 0-3 degrees). Three patients showed 1+ on varus stress test, while on Dial test another three patients showed 10 degrees reduction of external rotation compared with contralateral knee. The average Lysholm score was 94 points (range 83-100), and the mean International Knee Documentation Committee (IKDC) subjective result was 88.48 (range 74-96.5). Based on Lysholm score, the results were excellent in eight knees and good in two knees. On IKDC evaluation, two patients were grade A and eight were grade B. No significant difference in clinical results was observed between single and double femoral tunnel. CONCLUSION: Fibular-based technique showed good results in terms of clinical outcome, restoring varus and rotation stability of knees in treatment of chronic isolated PLC injury
    corecore