132 research outputs found

    Water, oceanic fracture zones and the lubrication of subducting plate boundaries - insights from seismicity

    Get PDF
    We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg-Richter law. This power lawdescribes the earthquakemagnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its alongstrike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov-Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north-south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value 'bull's-eyes' along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the related seismicity. Our results suggest serpentinization around mid-ocean ridge transform faults, which go on to become fracture zones on the incoming plate, plays a significant role in the delivery of water into the mantle at subduction zones

    Updating known distribution models for forecasting climate change impact on endangered species

    Get PDF
    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli’s Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species’ distribution, instead of building new models that are based on climate change variables only.Ministerio de Ciencia e Innovación and FEDER (project CGL2009-11316/BOS

    Back from a Predicted Climatic Extinction of an Island Endemic: A Future for the Corsican Nuthatch

    Get PDF
    The Corsican Nuthatch (Sitta whiteheadi) is red-listed as vulnerable to extinction by the IUCN because of its endemism, reduced population size, and recent decline. A further cause is the fragmentation and loss of its spatially-restricted favourite habitat, the Corsican pine (Pinus nigra laricio) forest. In this study, we aimed at estimating the potential impact of climate change on the distribution of the Corsican Nuthatch using species distribution models. Because this species has a strong trophic association with the Corsican and Maritime pines (P. nigra laricio and P. pinaster), we first modelled the current and future potential distribution of both pine species in order to use them as habitat variables when modelling the nuthatch distribution. However, the Corsican pine has suffered large distribution losses in the past centuries due to the development of anthropogenic activities, and is now restricted to mountainous woodland. As a consequence, its realized niche is likely significantly smaller than its fundamental niche, so that a projection of the current distribution under future climatic conditions would produce misleading results. To obtain a predicted pine distribution at closest to the geographic projection of the fundamental niche, we used available information on the current pine distribution associated to information on the persistence of isolated natural pine coppices. While common thresholds (maximizing the sum of sensitivity and specificity) predicted a potential large loss of the Corsican Nuthatch distribution by 2100, the use of more appropriate thresholds aiming at getting closer to the fundamental distribution of the Corsican pine predicted that 98% of the current presence points should remain potentially suitable for the nuthatch and its range could be 10% larger in the future. The habitat of the endemic Corsican Nuthatch is therefore more likely threatened by an increasing frequency and intensity of wildfires or anthropogenic activities than by climate change

    Unexpected Course of Nonlinear Cardiac Interbeat Interval Dynamics during Childhood and Adolescence

    Get PDF
    The fluctuations of the cardiac interbeat series contain rich information because they reflect variations of other functions on different time scales (e.g., respiration or blood pressure control). Nonlinear measures such as complexity and fractal scaling properties derived from 24 h heart rate dynamics of healthy subjects vary from childhood to old age. In this study, the age-related variations during childhood and adolescence were addressed. In particular, the cardiac interbeat interval series was quantified with respect to complexity and fractal scaling properties. The R-R interval series of 409 healthy children and adolescents (age range: 1 to 22 years, 220 females) was analyzed with respect to complexity (Approximate Entropy, ApEn) and fractal scaling properties on three time scales: long-term (slope β of the power spectrum, log power vs. log frequency, in the frequency range 10−4 to 10−2 Hz) intermediate-term (DFA, detrended fluctuation analysis, α2) and short-term (DFA α1). Unexpectedly, during age 7 to 13 years β and ApEn were higher compared to the age <7 years and age >13 years (β: −1.06 vs. −1.21; ApEn: 0.88 vs. 0.74). Hence, the heart rate dynamics were closer to a 1/f power law and most complex between 7 and 13 years. However, DFA α1 and α2 increased with progressing age similar to measures reflecting linear properties. In conclusion, the course of long-term fractal scaling properties and complexity of heart rate dynamics during childhood and adolescence indicates that these measures reflect complex changes possibly linked to hormonal changes during pre-puberty and puberty

    Ceramic on ceramic bearing fractures in total hip arthroplasty : an analysis of data from the national joint registry

    Get PDF
    Aims: Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA) are commonly used but concerns exist regarding ceramic fracture. This study aims to report the risk of revision for fracture of modern CoC bearings and identify factors that might influence this risk, using data from the National Joint Registry (NJR). Patients and Methods: We analysed data on 111,681 primary CoC THA’s and 182 linked revisions for bearing fracture recorded in NJR. We used implant codes to identify ceramic bearing composition and generated Kaplan-Meier estimates for implant survivorship. Logistic regression analyses were performed for implant size and patient specific variables to determine any associated risks for revision. Results: 99.8% of bearings were CeramTec Biolox® products. Revisions for fracture were linked to 7 of 79,442 (0.009%) Biolox® Delta heads, 38 of 31,982 (0.119%) Biolox® Forte heads, 101 of 80,170 (0.126%) Biolox® Delta liners and 35 of 31,258 (0.112%) Biolox® Forte liners. Regression analysis of implant size revealed smaller heads had significantly higher odds of fracture (χ2=68.0, p<0.0001). The highest fracture risk were observed in the 28mm Biolox® Forte subgroup (0.382%). There were no fractures in the 40mm head group for either ceramic type. Liner thickness was not predictive of fracture (p=0.67). BMI was independently associated with revision for both head fractures (OR 1.09 per unit increase, p=0.031) and liner fractures (OR 1.06 per unit increase, p=0.006). Conclusions: We report the largest study of CoC bearing fractures to date. The risk of revision for CoC bearing fracture is very low, however previous studies have underestimated this risk. There is good evidence that the latest generation of ceramic has greatly reduced the odds of head fracture but not of liner fracture. Small head size and high patient BMI are associated with an increased risk of ceramic bearing fracture

    Relating Habitat and Climatic Niches in Birds

    Get PDF
    Predicting species' responses to the combined effects of habitat and climate changes has become a major challenge in ecology and conservation biology. However, the effects of climatic and habitat gradients on species distributions have generally been considered separately. Here, we explore the relationships between the habitat and thermal dimensions of the ecological niche in European common birds. Using data from the French Breeding Bird Survey, a large-scale bird monitoring program, we correlated the habitat and thermal positions and breadths of 74 bird species, controlling for life history traits and phylogeny. We found that cold climate species tend to have niche positions in closed habitats, as expected by the conjunction of the biogeographic history of birds' habitats, and their current continent-scale gradients. We also report a positive correlation between thermal and habitat niche breadths, a pattern consistent with macroecological predictions concerning the processes shaping species' distributions. Our results suggest that the relationships between the climatic and habitat components of the niche have to be taken into account to understand and predict changes in species' distributions

    Reproducing the Proximal Femur Anatomy: Modular Femoral Component

    Get PDF
    Stem modularity can be classified according to the coupling location: distal, mid-stem, and proximal [1]. Mid-stem and proximal modularity have been more frequently used. Either the junction is located proximal or distal (mid-stem) to the neck osteotomy (Fig. 8.1). Proximal modularity with modular necks was introduced in 1987 by Cremascoli Ortho (Milan, Italy), in order to provide independent combinations of version, offset, and length [1]

    Follicular thyroid carcinoma invades venous rather than lymphatic vessels

    Get PDF
    Follicular thyroid carcinoma (FTC) tends to metastasize to remote organs rather than local lymph nodes. Separation of FTC from follicular thyroid adenoma (FTA) relies on detection of vascular and/or capsular invasion. We investigated which vascular markers, CD31, CD34 and D2-40 (lymphatic vessel marker), can best evaluate vascular invasion and why FTC tends to metastasize via blood stream to remote organs. Thirty two FTCs and 34 FTAs were retrieved for evaluation. The average age of patients with FTA was 8 years younger than FTC (p = 0.02). The female to male ratio for follicular neoplasm was 25:8. The average size of FTC was larger than FTA (p = 0.003). Fourteen of 32 (44%) FTCs showed venous invasion and none showed lymphatic invasion, with positive CD31 and CD34 staining and negative D2-40 staining of the involved vessels. The average number of involved vessels was 0.88 ± 1.29 with a range from 0 to 5, and the average diameter of involved vessels was 0.068 ± 0.027 mm. None of the 34 FTAs showed vascular invasion. CD31 staining demonstrated more specific staining of vascular endothelial cells than CD34, with less background staining. We recommended using CD31 rather than CD34 and/or D2-40 in confirming/excluding vascular invasion in difficult cases. All identified FTCs with vascular invasions showed involvement of venous channels, rather than lymphatic spaces, suggesting that FTCs prefer to metastasize via veins to distant organs, instead of lymphatic vessels to local lymph nodes, which correlates with previous clinical observations
    • …
    corecore