104 research outputs found

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD

    Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA), and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the <it>Uncaria </it>tomentosa, <it>Boswellia spp</it>., <it>Lepidium meyenii and L-Leucine </it>on the IL-1β-induced production of nitric oxide (NO), glycosaminoglycan (GAG), matrix metalloproteinases (MMPs), aggrecan (ACAN) and type II collagen (COL2A1) in human OA chondrocytes and OA cartilage explants.</p> <p>Methods</p> <p>Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-<it>Leucine </it>mixture (HLM, 1-10 μg/ml) and then stimulated with IL-1β (5 ng/ml). Effect of HLM on IL-1β-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits.</p> <p>Results</p> <p>HLM tested in these <it>in vitro </it>studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1β-stimulated OA chondrocytes (p < 0.05). Supporting these gene expression results, IL-1β-induced cartilage matrix breakdown, as evidenced by GAG release from cartilage explants, was also significantly blocked (p < 0.05). Moreover, in the presence of herbal-<it>Leucine </it>mixture (HLM) up-regulation of ACAN and COL2A1 expression in IL-1β-stimulated OA chondrocytes was also noted (p < 0.05). The inhibitory effects of HLM were mediated by inhibiting the activation of nuclear factor (NF)-kB in human OA chondrocytes in presence of IL-1β.</p> <p>Conclusion</p> <p>Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery.</p

    Acetylation of the Pro-Apoptotic Factor, p53 in the Hippocampus following Cerebral Ischemia and Modulation by Estrogen

    Get PDF
    Recent studies demonstrate that acetylation of the transcription factor, p53 on lysine(373) leads to its enhanced stabilization/activity and increased susceptibility of cells to stress. However, it is not known whether acetylation of p53 is altered in the hippocampus following global cerebral ischemia (GCI) or is regulated by the hormone, 17β-estradiol (17β-E(2)), and thus, this study examined these issues.The study revealed that Acetyl p53-Lysine(373) levels were markedly increased in the hippocampal CA1 region after GCI at 3 h, 6 h and 24 h after reperfusion, an effect strongly attenuated by 17β-E(2). 17β-E(2) also enhanced interaction of p53 with the ubiquitin ligase, Mdm2, increased ubiquitination of p53, and induced its down-regulation, as well as attenuated elevation of the p53 transcriptional target, Puma. We also observed enhanced acetylation of p53 at a different lysine (Lys(382)) at 3 h after reperfusion, and 17β-E(2) also markedly attenuated this effect. Furthermore, administration of an inhibitor of CBP/p300 acetyltransferase, which acetylates p53, was strongly neuroprotective of the CA1 region following GCI. In long-term estrogen deprived (LTED) animals, the ability of 17β-E(2) to attenuate p53 acetylation was lost, and intriguingly, Acetyl p53-Lysine(373) levels were markedly elevated in sham (non-ischemic) LTED animals. Finally, intracerebroventricular injections of Gp91ds-Tat, a specific NADPH oxidase (NOX2) inhibitor, but not the scrambled tat peptide control (Sc-Tat), attenuated acetylation of p53 and reduced levels of Puma following GCI.The studies demonstrate that p53 undergoes enhanced acetylation in the hippocampal CA1 region following global cerebral ischemia, and that the neuroprotective agent, 17β-E(2), markedly attenuates the ischemia-induced p53 acetylation. Furthermore, following LTED, the suppressive effect of 17β-E(2) on p53 acetylation is lost, and p53 acetylation increases in the hippocampus, which may explain previous reports of increased sensitivity of the hippocampus to ischemic stress following LTED

    A Yersinia Effector with Enhanced Inhibitory Activity on the NF-κB Pathway Activates the NLRP3/ASC/Caspase-1 Inflammasome in Macrophages

    Get PDF
    A type III secretion system (T3SS) in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJKIM) has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJKIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJKIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJKIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJCO92, YopJKIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJKIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJCO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro-inflammatory form of apoptosis may represent an early innate immune response to highly virulent pathogens such as Y. pestis KIM that have evolved an enhanced ability to inhibit host signaling pathways

    Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells

    Get PDF
    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient

    Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells

    Get PDF
    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient

    Exercise and bone health across the lifespan

    Get PDF
    With ageing, bone tissue undergoes significant compositional, architectural and metabolic alterations potentially leading to osteoporosis. Osteoporosis is the most prevalent bone disorder, which is characterised by progressive bone weakening and an increased risk of fragility fractures. Although this metabolic disease is conventionally associated with ageing and menopause, the predisposing factors are thought to be established during childhood and adolescence. In light of this, exercise interventions implemented during maturation are likely to be highly beneficial as part of a long-term strategy to maximise peak bone mass and hence delay the onset of age- or menopause-related osteoporosis. This notion is supported by data on exercise interventions implemented during childhood and adolescence, which confirmed that weight-bearing activity, particularly if undertaken during peripubertal development, is capable of generating a significant osteogenic response leading to bone anabolism. Recent work on human ageing and epigenetics suggests that undertaking exercise after the fourth decade of life is still important, given the anti-ageing effect and health benefits provided, potentially occurring via a delay in telomere shortening and modification of DNA methylation patterns associated with ageing. Exercise is among the primary modifiable factors capable of influencing bone health by preserving bone mass and strength, preventing the death of bone cells and anti-ageing action provided
    corecore