4,187 research outputs found

    Performance optimization of a leagility inspired supply chain model: a CFGTSA algorithm based approach

    Get PDF
    Lean and agile principles have attracted considerable interest in the past few decades. Industrial sectors throughout the world are upgrading to these principles to enhance their performance, since they have been proven to be efficient in handling supply chains. However, the present market trend demands a more robust strategy incorporating the salient features of both lean and agile principles. Inspired by these, the leagility principle has emerged, encapsulating both lean and agile features. The present work proposes a leagile supply chain based model for manufacturing industries. The paper emphasizes the various aspects of leagile supply chain modeling and implementation and proposes a new Hybrid Chaos-based Fast Genetic Tabu Simulated Annealing (CFGTSA) algorithm to solve the complex scheduling problem prevailing in the leagile environment. The proposed CFGTSA algorithm is compared with the GA, SA, TS and Hybrid Tabu SA algorithms to demonstrate its efficacy in handling complex scheduling problems

    Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip

    Get PDF
    Vascular plants rely on differences of osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as M\"unch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems to occur via passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the nonlinear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device, phloem concentration is set by the balance between the resistances to diffusive loading from the source and convective export through the phloem. Convection-limited export corresponds to classical models of M\"unch transport, where phloem concentration is close to that of the source; in contrast, diffusion-limited export leads to small phloem concentrations and weak scaling of flow rates with the hydraulic resistance. We then show that the effective regime of convection-limited export is predominant in plants with large transport resistances and low xylem pressures. Moreover, hydrostatic pressures developed in our synthetic passive loader can reach botanically relevant values as high as 10 bars. We conclude that passive loading is sufficient to drive long-distance transport in large plants, and that trees are well suited to take full advantage of passive phloem loading strategies

    Baseline and follow-up assessment of regional left ventricular volume using 3-dimensional echocardiography: comparison with cardiac magnetic resonance

    Get PDF
    The assessment of regional volumes is an option for analysis of the response of LV segments to interventions such as revascularization or cell therapy. We sought to compare regional volumes from 3D-echocardiography (3DE) with cardiac magnetic resonance (CMR) over follow-up

    Effects of affective picture viewing on postural control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion.</p> <p>Results</p> <p>The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics.</p> <p>Conclusion</p> <p>Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and the neural control of behavior.</p

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    A Prospective Evaluation of Quick Intraoperative Parathyroid Hormone Assay at the Time of Skin Closure in Predicting Clinically Relevant Hypocalcemia after Thyroidectomy

    Get PDF
    BACKGROUND: Post-thyroidectomy hypocalcemia is a major contributing factor in delayed hospital discharge and dissuading surgeons from ambulatory thyroidectomy. We prospectively evaluated the accuracy and reliability of quick parathyroid hormone level measurement at skin closure (PTH-SC) in predicting clinically relevant hypocalcemia (i.e., patients requiring calcium +/- calcitriol supplements on hospital discharge). METHODS: Of the 117 patients who underwent a total or completion total thyroidectomy and PTH-SC, 17 (14.5 %) had hypocalcemic symptoms or adjusted calcium 1 pmol/L) had a higher specificity (95.0 %) and AUC (0.887) than serial calcium monitoring or PTH-D1 alone. Although 3/98 of patients with PTH-SC >1 pmol/L required calcium supplements on discharge, they required only the minimum amount to maintain normocalcemia. CONCLUSION: PTH-SC is an accurate and reliable means of predicting clinically relevant hypocalcemia. It would be reasonable to discharge those with PTH-SC >1 pmol/L on the same operative day as the risk of life-threatening hypocalcemia would seem unlikely.published_or_final_versio

    Electrophysiologic Studies and Radiofrequency Catheter Ablation of Ectopic Atrial Tachycardia in Children

    Get PDF
    Ectopic atrial tachycardia (EAT) often resists medical therapy, making radiofrequency catheter ablation (RFCA) the preferred treatment. This study reviewed the records of 35 patients who underwent electrophysiologic studies (EPS) and 39 RFCA procedures for EAT during a 10-year period. Of the 35 patients, 10 (28%) presented with decreased ventricular function and tachycardia-induced cardiomyopathy (TIC). The EAT originated on the right atrial side in 19 patients (54%) and on the left atrial side in the remaining 16 patients (46%). The right atrial sites included the right atrial appendage (RAA) (n = 9, 25%), the tricuspid annulus (n = 7, 20%), and the crista terminalis (n = 3). The left atrial sites included the left atrial appendage (LAA) (n = 6, 17%), the pulmonary veins (n = 5, 14%), the mitral annulus (n = 3), and the posterior wall of the left atrium (n = 2). The mechanism of all EAT probably is automaticity. All EATs could be abolished using RFCA. Follow-up data were available for all patients 2 to 8 years after RFCA. All 35 patients remained recurrence free, and ventricular function improved for all 10 patients with TIC. The origin of EAT in children differed from its origin in adults. The authors conclude that RFCA is a safe and effective treatment option for children with refractory EAT and should be considered early in the course of their illness

    Automatic construction of rule-based ICD-9-CM coding systems

    Get PDF
    Background: In this paper we focus on the problem of automatically constructing ICD-9-CM coding systems for radiology reports. ICD-9-CM codes are used for billing purposes by health institutes and are assigned to clinical records manually following clinical treatment. Since this labeling task requires expert knowledge in the field of medicine, the process itself is costly and is prone to errors as human annotators have to consider thousands of possible codes when assigning the right ICD-9-CM labels to a document. In this study we use the datasets made available for training and testing automated ICD-9-CM coding systems by the organisers of an International Challenge on Classifying Clinical Free Text Using Natural Language Processing in spring 2007. The challenge itself was dominated by entirely or partly rule-based systems that solve the coding task using a set of hand crafted expert rules. Since the feasibility of the construction of such systems for thousands of ICD codes is indeed questionable, we decided to examine the problem of automatically constructing similar rule sets that turned out to achieve a remarkable accuracy in the shared task challenge. Results: Our results are very promising in the sense that we managed to achieve comparable results with purely hand-crafted ICD-9-CM classifiers. Our best model got a 90.26 % F measure on the training dataset and an 88.93 % F measure on the challenge test dataset, using the micro-averaged Fβ=1 measure, the official evaluatio
    corecore