4,323 research outputs found

    Aerobic Lineage of the Oxidative Stress Response Protein Rubrerythrin Emerged in an Ancient Microaerobic, (Hyper)Thermophilic Environment

    Get PDF
    Indexación: Web of Science; Scopus.Rubrerythrins (RBRs) are non-heme di-iron proteins belonging to the ferritin-like superfamily. They are involved in oxidative stress defense as peroxide scavengers in a wide range of organisms. The vast majority of RBRs, including classical forms of this protein, contain a C-terminal rubredoxin-like domain involved in electron transport that is used during catalysis in anaerobic conditions. Rubredoxin is an ancient and large protein family of short length (<100 residues) that contains a Fe-S center involved in electron transfer. However, functional forms of the enzyme lacking the rubredoxin-like domain have been reported (e.g., sulerythrin and ferriperoxin). In this study, phylogenomic evidence is presented that suggests that a complete lineage of rubrerythrins, lacking the rubredoxin-like domain, arose in an ancient microaerobic and (hyper)thermophilic environments in the ancestors of the Archaea Thermoproteales and Sulfolobales. This lineage (termed the "aerobic-type" lineage) subsequently evolved to become adapted to environments with progressively lower temperatures and higher oxygen concentrations via the acquisition of two co-localized genes, termed DUF3501 and RFO, encoding a conserved protein of unknown function and a predicted Fe-S oxidoreductase, respectively. Proposed Horizontal Gene Transfer events from these archaeal ancestors to Bacteria expanded the opportunities for further evolution of this RBR including adaption to lower temperatures. The second lineage (termed the cyanobacterial lineage) is proposed to have evolved in cyanobacterial ancestors, maybe in direct response to the production of oxygen via oxygenic photosynthesis during the Great Oxygen Event (GOE). It is hypothesized that both lineages of RBR emerged in a largely anaerobic world with "whiffs" of oxygen and that their subsequent independent evolutionary trajectories allowed microorganisms to transition from this anaerobic world to an aerobic one.http://journal.frontiersin.org/article/10.3389/fmicb.2016.01822/ful

    Characterisation of the nociceptive phenotype of suppressible galanin overexpressing transgenic mice

    Get PDF
    The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems and is involved in many diverse biological functions. There is a substantial data set that demonstrates galanin is upregulated after injury in the DRG, spinal cord and in many brain regions where it plays a predominantly antinociceptive role in addition to being neuroprotective and pro-regenerative. To further characterise the role of galanin following nerve injury, a novel transgenic line was created using the binary transgenic tet-off system, to overexpress galanin in galaninergic tissue in a suppressible manner. The double transgenic mice express significantly more galanin in the DRG one week after sciatic nerve section (axotomy) compared to WT mice and this overexpression is suppressible upon administration of doxycycline. Phenotypic analysis revealed markedly attenuated allodynia when galanin is overexpressed and an increase in allodynia following galanin suppression. This novel transgenic line demonstrates that whether galanin expression is increased at the time of nerve injury or only after allodynia is established, the neuropeptide is able to reduce neuropathic pain behaviour. These new findings imply that administration of a galanin agonist to patients with established allodynia would be an effective treatment for neuropathic pain

    Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies

    Get PDF
    Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG), which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients

    Corporate branding’s influence on front-line employee and consumer value co-creation in UK household consumer markets

    Get PDF
    General managers are presented with an extensive opportunity to innovate and gain market advantage from front-line employees (FLEs) and consumers working together to exchange services and co-create value. To do this, general managers need to understand more about what influences the content and quality of FLE and consumer service exchanges? What predisposes FLEs to commit to service exchange and value co-creation? And what organizational phenomena can general managers use to influence this predisposition? This article presents results from an empirical research study of FLEs employed by a firm that provides installation, servicing and emergency services to domestic households across the United Kingdom. The study reveals the importance of the firm’s corporate brand in its influence upon FLE’s sense of membershipand attachment to a firm (organizational identity) and the consequent effect of this on their predisposition for serviceexchange (organizational commitment), that is, whether FLEs want to remain in their role, because they feel they ought to,want to or they have too much to lose by leaving

    Virological sampling of inaccessible wildlife with drones

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. There is growing interest in characterizing the viromes of diverse mammalian species, particularly in the context of disease emergence. However, little is known about virome diversity in aquatic mammals, in part due to difficulties in sampling. We characterized the virome of the exhaled breath (or blow) of the Eastern Australian humpback whale (Megaptera novaeangliae). To achieve an unbiased survey of virome diversity, a meta-transcriptomic analysis was performed on 19 pooled whale blow samples collected via a purpose-built Unmanned Aerial Vehicle (UAV, or drone) approximately 3 km off the coast of Sydney, Australia during the 2017 winter annual northward migration from Antarctica to northern Australia. To our knowledge, this is the first time that UAVs have been used to sample viruses. Despite the relatively small number of animals surveyed in this initial study, we identified six novel virus species from five viral families. This work demonstrates the potential of UAVs in studies of virus disease, diversity, and evolution

    Prevalence of Toxoplasma gondii infection in Myocastor coypus in a protected Italian wetland

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Toxoplasma gondii </it>is the causative agent for a major zoonosis with cosmopolitan distribution. Water has been implicated in outbreaks of toxoplasmosis in recent years. Coypus (<it>Myocastor coypus</it>), commonly nutria, are large semi-aquatic invasive rodents, naturalized throughout European countries, including most wetlands of Central Italy. The habitat of these animals is both terrestrial and aquatic, making them a species highly exposed to the parasite.</p> <p>Findings</p> <p>The occurrence of the infection was evaluated using a modified agglutination test (MAT) in 74 adult coypus from a naturalized population living in a wetland of Central Italy. Nested PCR (n-PCR) assay was carried out on some of them. Positive <it>T. gondii </it>MAT results were found in 44 animals (59·4%), 30 males (68·2%) and 14 females (31·8%). Antibody titers were ranging from 20 to 40960, while 12 out of 23 (52·2%), examined animals, 8 males (66·7%) and 4 females (33·3%), resulted positive to n-PCR. All n-PCR positive animals were seropositive, showing antibody titers ranging from 640 to 40960.</p> <p>Conclusions</p> <p>Our results indicate that examined animals are heavily parasitized with <it>Toxoplasma</it>. This suggests that coypus could be a reservoir of this parasite, because they can be eaten both by scavenger animals and by humans, and that these animals would play a role in maintaining the cycle of <it>T. gondii</it>.</p

    Enabling rational gut microbiome manipulations by understanding gut ecology through experimentally-evidenced in silico models

    Get PDF
    © 2021 The Author(s). The gut microbiome has emerged as a contributing factor in non-communicable disease, rendering it a target of health-promoting interventions. Yet current understanding of the host-microbiome dynamic is insufficient to predict the variation in intervention outcomes across individuals. We explore the mechanisms that underpin the gut bacterial ecosystem and highlight how a more complete understanding of this ecology will enable improved intervention outcomes. This ecology varies within the gut over space and time. Interventions disrupt these processes, with cascading consequences throughout the ecosystem. In vivo studies cannot isolate and probe these processes at the required spatiotemporal resolutions, and in vitro studies lack the representative complexity required. However, we highlight that, together, both approaches can inform in silico models that integrate cellular-level dynamics, can extrapolate to explain bacterial community outcomes, permit experimentation and observation over ecological processes at high spatiotemporal resolution, and can serve as predictive platforms on which to prototype interventions. Thus, it is a concerted integration of these techniques that will enable rational targeted manipulations of the gut ecosystem.University of Sydney’s Centre for Advanced Food and Engineering; JPMO acknowledges a PhD scholarship from the Faculty of Engineering at the University of Sydney. ERS acknowledges the financial support from the à Beckett Cancer Research Trust (University of Sydney Fellowship)

    High throughput genome scale modeling predicts microbial vitamin requirements contribute to gut microbiome community structure

    Get PDF
    Data availability statement: All data generated or analyzed during this study are included in this published article and its supplementary information files.Copyright © 2022 The Author(s). Human gut microbiome structure and emergent metabolic outputs impact health outcomes. However, what drives such community characteristics remains underexplored. Here, we rely on high throughput genomic reconstruction modeling, to infer the metabolic attributes and nutritional requirements of 816 gut strains, via a framework termed GEMNAST. This has been performed in terms of a group of human vitamins to examine the role vitamin exchanges have at different levels of community organization. We find that only 91 strains can satisfy their vitamin requirements (prototrophs) while the rest show various degrees of auxotrophy/specialization, highlighting their dependence on external sources, such as other members of the microbial community. Further, 79% of the strains in our sample were mapped to 11 distinct vitamin requirement profiles with low phylogenetic consistency. Yet, we find that human gut microbial community enterotype indicators display marked metabolic differences. Prevotella strains display a metabolic profile that can be complemented by strains from other genera often associated with the Prevotella enterotype and agrarian diets, while Bacteroides strains occupy a prototrophic profile. Finally, we identify pre-defined interaction modules (IMs) of gut species from human and mice predicted to be driven by, or highly independent of vitamin exchanges. Our analysis provides mechanistic grounding to gut microbiome stability and to co-abundance-based observations, a fundamental step toward understanding emergent processes that influence health outcomes. Further, our work opens a path to future explorations in the field through applications of GEMNAST to additional nutritional dimensions.University of Sydney (PhD scholarship and à Beckett Cancer Research Trust Fellowship)
    corecore