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ABSTRACT
The gut microbiome has emerged as a contributing factor in non-communicable disease, rendering it 
a target of health-promoting interventions. Yet current understanding of the host-microbiome 
dynamic is insufficient to predict the variation in intervention outcomes across individuals. We explore 
the mechanisms that underpin the gut bacterial ecosystem and highlight how a more complete 
understanding of this ecology will enable improved intervention outcomes. This ecology varies within 
the gut over space and time. Interventions disrupt these processes, with cascading consequences 
throughout the ecosystem. In vivo studies cannot isolate and probe these processes at the required 
spatiotemporal resolutions, and in vitro studies lack the representative complexity required. However, 
we highlight that, together, both approaches can inform in silico models that integrate cellular-level 
dynamics, can extrapolate to explain bacterial community outcomes, permit experimentation and 
observation over ecological processes at high spatiotemporal resolution, and can serve as predictive 
platforms on which to prototype interventions. Thus, it is a concerted integration of these techniques 
that will enable rational targeted manipulations of the gut ecosystem.
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Introduction

A growing body of evidence implicates the gut 
‘microbiome’, the complex ecosystem comprising 
the human gut and the microorganisms inhabiting 
it, as a contributing factor in the etiology of non- 
communicable diseases,1–8 thus positioning it as 
a potential therapeutic target. For instance, diet read
ily modulates the gut microbiome and could thus be 
used to intervene in microbiome–host interactions. 
However, whilst broad modulators of microbiome 
composition and metabolism are known, inter- 
individual variations complicate the design and tar
geting of beneficial interventions.9,10 People are 
unique organisms harboring individualized micro
biomes, and their diverging intervention outcomes 
stem from variation in gut ecosystem constituents 
and processes. However, comprehensive under
standing of the gut ecosystem is presently lacking 
and difficult to obtain. In vivo study lacks the neces
sary spatiotemporal sampling and observation 

capacity, and in vitro models cannot recapitulate 
the host’s complexity. Yet, they offer complementary 
perspectives, informing both mechanistic under
standing of the microbiome’s influence on host 
health and cell-specific models. We propose that, by 
encapsulating this information, in silico models that 
enable the experimentation, insight, and predictive 
capacity needed to rationally design and target inter
ventions are now possible. Whilst we focus primarily 
on bacterial taxa, as the most abundant and most 
studied portion of the microbiome, we note that 
archaea,7 eukaryotes,8,11,12 and viruses6 (e.g. phages) 
that co-inhabit the gut are gaining attention and are 
being found to also influence host health status.

The microbiome’s impact on health outcomes is 
an emergent property manifesting from the collec
tive activity of trillions of individual microbial cells 
vying for survival within their local gut environ
ments (Figure 1). Interventions alter cell local 
environments and drive changes in cell behavior. 
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These behavioral changes cascade through the 
community, reconfiguring strain niches and fitness, 
intercellular interactions, community metabolic 
output, and ultimately the functional responses of 
the host. The host integrates these signals, and its 
responses feedback on local microbial environ
ments and alter selective pressures. Thus, host and 
microbial processes are intertwined and co- 
responsive. Given such interactive complexity, 
individualized and diverging responses to interven
tion are to be expected. Importantly, reasoning 
about the microbiome at the level of the strain 

(and thus cell) and it’s co-possession of numerous 
genes and metabolic pathways is essential: genes 
(and metabolic pathways) are only expressed 
when housed within viable organisms, and cell 
viability spans several nutritional requirements 
that involve crosstalk (coordination) between mul
tiple metabolic pathways. Environmental perturba
tions need only limit a cell’s access to one nutrient 
to impact all its metabolic activities. As such, ana
lyzing the microbiome through genes alone, inde
pendently of one another and the strains co- 
possessing them, will be of limited insight.

Figure 1. Health outcomes emerge from individual microbes and their survival strategies. Nutrient availability, primarily dietary, but 
also host secretions, drive microbes to regulate their metabolic capabilities to survive. Individual microbes adapting to their nutritional 
environment reconfigures the gut microbiome metabolic network and community-level metabolic output. The resultant changes can 
impact on host health.
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Two compositionally and functionally distinct 
microbiomes will adapt differently to a changing post- 
intervention environment and each host will respond 
differently to that adaptative process. Hence, to max
imize effectiveness, interventions must be tailored to 
the individual. This ultimately entails (1) capturing 
the range of behaviors (‘dynamics’) each microbial 
strain in a community can exhibit across various 
environmental (including nutritional) contexts; (2) 
integrating these dynamics to extrapolate the resultant 
community-level outputs that can impact on host 
health; and (3) understanding host–microbiome 
interactions. Here, we consider how this can be 
achieved through an integration of modalities for 
studying the host-microbiome system.

In vivo studies associate host health outcomes 
with strains and molecular products, outcomes 
that originate from individual microbe-level beha
viors. These factors form targets for control 
through intervention. In vitro culturing studies 
can reveal how specific strains respond to, and in 
turn modify, their environments. Understanding 
how and why interventions alter community-level 
emergent properties is not possible without detailed 
characterization of individual strain response 
dynamics. In silico modeling techniques deliver 
the integrative perspective of how cell-level beha
viors scale up to the community-level phenomena 
that drive health outcomes. Models encode cell- 
level behaviors and replicate environment condi
tions, and then reveal spatiotemporal community 
outcomes.

In vivo studies integrate whole gut ecosystem 
processes to highlight intervention targets

Non-communicable diseases are host organism-level 
properties manifesting, in part, from how micro
biome and host interact to shape one another.13 In 
vivo study outcomes reflect an implicit integration of 
these factors. Of particular relevance is microbiome 
community composition. Host disease status has 
been associated with microbiome structural qualities 
including variation in strain relative abundances14–19 

and/or microbial community diversity.1–5,19,20 

Effects have occasionally been ascribed to individual 
strains: Christensenella minuta was found enriched 
in lean twins relative to their obese siblings, and 
inoculation of this strain into “obese” microbiomes 

transferred into mice reduced subsequent adiposity 
gains in recipient animals.21 However, isolating 
effects to specific microbial strains is difficult because 
strains overlap considerably in function. Yet it is 
pertinent to account for the effects of all strains, as 
an intervention may have no effect in a community 
if suppression of one strain elevates another of simi
lar functional capacity.

Microbial community composition and meta
bolic output result from the growth substrates 
microbes have access to, and these primarily origi
nate from host diet. Microbiomes shaped under 
high-fat and/or sugar diets have been associated 
with the etiology of diseases including diabetes,22 

obesity,22 and hypertension.23,24 Conversely, dietary 
fiber consumption is associated with host health 
benefits,25–27 in part due to microbial fermentation 
of fiber into short chain fatty acids (SCFA).28 The 
direct dietary administration of SCFAs has con
ferred protection against induced colitis,29 food 
allergies,30 asthma,31 and diabetes32 in mice. 
However, associating diet–microbiome interactions 
with health outcomes is complicated. Firstly, micro
bial metabolic outputs vary with context. 
Substituting fiber with protein can increase micro
bial generation of pro-inflammatory metabolites, 
including hydrogen sulfide,33,34 ammonia,35 and 
phenolic compounds.36,37 Yet, protein fermentation 
can also lead to the generation of anti-inflammatory 
compounds such as butyrate38 and the polyamine 
agmatine.39 Secondly, diet is compositional: a high 
fat diet necessitates low protein and/or carbohy
drate, so which nutrient confers a given effect? 
Systematic variation is required for parsing of 
effects. One such study showed interactive effects 
of macronutrients on microbiome community com
position which in turn corresponded with host 
immunometabolism and body composition 
status.40 Dietary components are readily labeled as 
deleterious or beneficial to health, but in actuality 
effects are non-linear and wider context matters, yet 
this is difficult to account for.

Beyond diet, host-derived molecules including 
bile acids and mucus glycoproteins (mucins) 
secreted into the gut also impact the 
microbiome.41,42 Mucins shape mucosal micro
biome communities as both a growth substrate43 

and anchoring matrix44 for select commensals. For 
instance, Akkermansia municiphila and Bacteroides 
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thetaiotaomicron can adhere to and hydrolyze mucin 
glycans and thus competitively colonize the gut 
mucosa.44–47 The result is that luminal and mucosal 
communities are compositionally48 and metaboli
cally distinct,49 and as such these communities 
have different impacts on host health. The micro
biome also metabolizes the primary bile acids cholic 
and chenodeoxycholic acids into numerous second
ary bile acids that can actively regulate bacterial 
populations50,51 at phylum-50 and strain-levels.52 

Together, host diets and endogenous secretions 
interact in shaping the microbiome, and rational 
intervention design should account for both, lest 
they present as confounding factors.

Targeted intervention design requires that we 
account for the effects of luminal and mucosal- 
associated strains on host health, and the various 
interacting dietary and host processes that shape 
the microbiome. Community and gut environmen
tal contexts dictate which molecular products are 
produced, and what their contributions to health 
status are. In vivo study caries the advantage of 
integrating all such relevant factors in revealing 
host outcomes. Yet isolating specific causative fac
tors is admittedly challenging as health status is 
rarely attributable to singular molecules and strains.

Intervention targets are multiple, with broad 
host-microbiome molecular exchanges 
impacting health

In vivo research has revealed the complexity of the 
host–microbiome signal exchange that modulates 
health outcomes, which interventions should seek 
to manipulate. For instance, whilst the SCFA buty
rate, as a primary colonocyte energy source, is pro
tective against colorectal cancer,53,54 it also delays 
wound repair during overt inflammation or damage 
to the intestinal mucosa.55 Hydrogen sulfide, derived 
from bacterial metabolism,56 can accelerate the ulcer 
healing process observed in colitis,57 but also upre
gulate colorectal cancer cell division when compared 
to regular colonocytes.58 Single metabolites are not 
ubiquitously deleterious or beneficial. Again, the 
broader context matters, and targeted interventions 
must account for this.

Microbe-associated molecular patterns 
(MAMPs) are cell structural components that influ
ence host inflammatory status. Classic examples 

include peptidoglycan, lipopolysaccharide (LPS), 
and flagellin. These molecules are structurally com
plex and can vary considerably between strains.59– 

61 Variants can modulate both innate62 and 
adaptive63 arms of the immune system to both pro- 
inflammatory and tolerogenic effects.64–66 For 
instance, LPS has been linked to the onset of obe
sity, diabetes, and cardiovascular disease.67–69 Yet, 
Escherichia coli-derived LPS decreased autoim
mune diabetes incidence in animal models relative 
to Bacteroides-derived LPS.70 Thus, immune tone 
and disease status are a consequence of the balance 
of pro-and anti-inflammatory molecular signals.71 

Interventions should seek to target not only single 
MAMPs but shape the holistic profile of molecules 
generated, and this requires understanding of the 
ecology through which community composition 
arises.

The host responds to microbiome signals to 
maintain homeostasis, but tipping points exist 
beyond which microbiome–host interactions 
devolve into perpetuating inflammation that com
promises gut barrier function.72 A high-fat diet can 
induce this state by promoting overgrowth of gut 
bacteria with consequential over-production of 
pro-inflammatory cytokines by the host.73 

Localized inflammation increases gut permeability, 
a condition known as leaky gut,74 followed by trans
location of cytokines and MAMPs to portal circula
tion. Characterizing the boundaries at which 
tipping points transit between self-stabilizing ben
eficial and self-stabilizing deleterious host–micro
biome interactions is critical, given interventions 
that seek to shift the ecosystem from one state 
into another.

Lastly, host–microbiome interactions vary both 
temporally and spatially within the gut. Being in 
closer proximity to host tissue, mucosa-associated 
strains interact more directly with the host, poten
tially exerting different and stronger pressures rela
tive to those of luminal strains.49 Accounting for 
this mucosal gut microbiome is relevant; however, 
mucosa-associated strains are underrepresented in 
fecal samples, and this could distort the relation
ships inferred between observed microbial commu
nities and their consequences on host health. 
Further, both microbial populations75,76 and envir
onmental conditions77,78 are distributed heteroge
neously along the colon, and undergo functional 

e1965698-4 J. P. MOLINA ORTIZ ET AL.



and compositional diurnal oscillations79 in part 
reflecting host feeding patterns.42,80 Detailed spa
tiotemporal characterization of such patterns is 
highly invasive and thus infeasible in vivo, but 
such heterogeneity is highly relevant to host health
for example, the localized inflammatory regions 
characterizing Crohn’s disease.

In summary, in vivo studies reveal system tip
ping points whose breech negatively impacts the 
host. The profile of molecular interactions between 
host and microbiome underlie these phenomena 
but are spatiotemporally variable. Further, no sin
gle molecule is uniformly beneficial or deleterious: 
context is key. Controlling these interactions is 
non-trivial as microbiome molecular output stems 
from community-wide ecological interactions, and 
these are difficult to study in vivo.

Complex community ecology underlies 
microbiome molecular output

Fermentative microbes have evolved a spectrum of 
survival strategies that rely on shorter/incomplete 
metabolic pathways81 that output metabolites such 
as SCFAs,81–83 that other microbes can further 
metabolize. A whole community engaging in such 
strategies yields complex inter-microbial depen
dencies. The profile of metabolites produced is 
difficult to forecast as it is sensitive to interactions 
among the microbial cells present, along with host 
diet and endogenous secretions. For instance, 
hydrogen sulfide can result from metabolism of 
endogenous and dietary cysteine and bile acids, 
thus its production depends on dietary protein84 

and fat consumption,33 and the presence of sulfur- 
reducing organisms including Clostridium and 
Enterobacter.33,34

The capacity to generate most metabolites is 
widely distributed among phylogenetically diverse 
strains, and such redundancy further complicates 
metabolite output forecasting as has been observed 
for butyrate.85,86 Over 25% of strains, spanning 
several phyla, in a given individual’s microbiome 
can generate butyrate87 and four major butyrate 
production pathways with distinct substrates 
exist.88 Further illustrating the consequences of 
such redundancy, microbiomes sampled from 
three individuals varied in the profile of SCFAs 
produced when cultured using identical growth 

media.89 Thus, even in highly controlled culture 
conditions, a community’s possession of multiple 
pathways for generating a metabolite, and numer
ous strains supporting each pathway, render output 
prediction difficult.

Importantly, a strain’s presence and capacity for 
generating a given metabolite does not necessitate 
its actual engagement in the activity. Nutrient lim
itation will impact a cell’s capacity to grow. The 
nutritional environment is, in turn, modulated by 
host diet, which substrates metabolically active 
strains are presently consuming, and which inter
mediate metabolites they produce. Many microor
ganisms possess diverse strategies for satisfying 
their nutritional requirements. For example, 
Bacteroides thetaiotaomicron can degrade a wide 
range of complex dietary carbohydrates90 and host- 
derived glycans91 rendering it adaptive to varying 
nutritional contexts.92 Thus, accurate prediction of 
community composition and metabolic output 
necessitates accounting for cell nutritional (and 
thus growth) statuses, their nutritional context 
and how they modify it.

Any intervention that modulates a strain’s 
growth dynamics, in terms of prevalence and out
put, has the potential for cascading effects through 
the microbial community. Nutrient availability and 
competition dynamics shift, as will the profile of 
metabolites contributed back into the environment 
(Figure 1). These manifest as localized effects but 
can permeate more broadly through time and 
space. To rationally design interventions with pre
dictable outcomes requires these ecological pro
cesses be characterized and their integrative 
consequences understood. This is extremely diffi
cult to achieve in the real world, but possible in 
silico with support from in vitro studies that com
prehensively map out strain-level growth dynamics.

Comprehensive mapping of strain growth 
dynamics through in vitro study

The growth dynamics of individual strains, and 
their interactions with one another and specific 
host processes, can be characterized in detail out
side of the living host. Environments reflecting 
locales in the gut can be imposed, controlling for 
nutritional context, water content, pH and selective 
inclusion of particular host factors. Strain growth 
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rates, substrate utilization, and metabolic output 
can be quantified. In vitro technologies afford 
a comprehensive mapping of how given strains 
respond to changing environments. Thus, mucin 
and high pH were identified as fundamental 
requirements for A. muciniphila colonization, 
explaining its prevalence in the distal colon.93,94 

Capturing strain growth requirements is essential 
for intervention design, as they determine whether 
or not a particular strain can grow given 
a particular nutrient context, with downstream 
implications for community composition and 
metabolic output.

How strains adapt their behaviors under chan
ging environments likewise influences intervention 
outcomes. Microbial substrate preferences can 
impact competition dynamics and have been 
uncovered. For instance, B. thetaiotaomicron prior
itizes mannose over other monosaccharides,95 and 
plant-derived polysaccharides over mucin 
carbohydrates.96 Similarly, lactate-utilizing bacteria 
prefer glucose over lactate when both are 
available.97 These substrate preferences are often 
strain-specific,98 reflecting differences in metabolic 
pathways. Strain metabolic output also differs with 
environmental context. Certain bacteria can gener
ate formate, a common intermediate metabolite, 
but under specific pH conditions the same micro
organisms can further metabolize it and generate 
gaseous hydrogen instead.99 In situations where 
formate-producing bacteria are paired with hydro
gen-dependent microbes such as Blautia hydroge
notrophica, formate is also further metabolized to 
acetate and energy harvest is maximized.100 Even in 
pure culture, the relationship between the factors of 
substrate availability, cell capability/attributes and 
the outcome of net metabolite production is com
plex since they result from multiple causal (and 
interfering) pathways that vary over time.

Intricate metabolic interactions take place between 
gut microbes. Diverse ecological relationships, such as 
cross-feeding (mutualism), amensalism, and competi
tion coexist in the gut to shape the microbiome and its 
metabolic output. Cross-feeding has been extensively 
studied owing to its scope for expanding 
a strain’s growth niche. For instance, in co-culture, 
Ruminococcus bromii produces formate 
which B. hydrogenotrophica consumes, and 
B. hydrogenotrophica reciprocates with panthothenate 

which R. bromii requires for optimal growth but can
not synthesize.100 This relationship also involves 
hydrogen utilization by B. hydrogenotrophica as 
described above. Concomitantly, R. bromii and 
B. hydrogenotrophica compete for the vitamin thia
mine in this context, exemplifying how complex inter
actions in the gut can be. Microbes form a complex 
web of interactions and variations in microbial mem
bership or activity can trigger a cascade of effects 
across the network. The units of biological activity in 
a community are not necessarily cells or strains – 
syntrophic dependencies mean multi-organism net
works are more appropriate for modeling some 
outputs.

In vitro technological advancements are also 
facilitating detailed investigation of isolated 
host–microbiome interaction pathways. These 
methods cannot fully recapitulate the host but 
can elucidate the ‘behavioral building blocks’ 
from which whole-scale host–microbiome inter
actions emerge. Cell culture models employ spe
cific cell lines to replicate the intestinal 
epithelium,101 capturing processes including 
mucin excretion, cell migration, and signaling. 
This has enabled study of bacterial adherence to 
epithelial cells and the former’s response to cyto
kine generation.102 Microfluidic technologies 
combined with cellular culturing have enabled 
the study of how peristalsis and intraluminal 
flow impact the gut microbiome.103,104 Multi- 
stage continuous fermentation models reveal 
spatiotemporal dynamics, e.g. that the impact 
of a dietary intervention was not equally distrib
uted along the gut.105 For instance, the 
Simulator of the Human Intestinal Microbial 
Ecosystem (SHINE), a modular multi-stage con
tinuous fermentation model, was extended to 
study mucosa-adherent microbiome dynamics 
(M-SHINE), specifically the recovery of 
Lactobacillus strains following an antibiotic 
pulse.106 Microbial-host interactions fundamen
tally shape microbial behaviors and in vitro 
approaches that trace and objectively measure 
them are important to rational intervention 
development. Advances in techniques to culture 
cells and measure physiology mean it is possible 
to effectively describe the range of cell states in 
response to variation in physio-chemical context 
(at least in much more detail than previously).107
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These in vitro approaches represent ‘reduction
ist’ science: isolating and manipulating pathways 
and microbes to probe their dynamics. They offer 
insights that cannot be accurately generated 
through other means, but they also face limita
tions of scale. Complete characterization of strain 
dynamics necessitates wide, systematic explora
tion of environmental contexts and strain 
responses. It is impractical, even with advances 
in modern robotic fermentation systems, to con
duct such broad experimentation for each of the 
thousands of strains occupying the gut. When 
compounded with the range of unique consortia 
that can be assembled and investigated, the experi
mental burden is staggering. For instance, to map 
the growth requirements around the eight 
B vitamins would entail 255 unique inclusion/ 
exclusion combinations, which if applied to 400 
strains (approximate richness of the human 
microbiome108) entails 102,000 cultures. 
A second key challenge is one of complexity; com
prehensive characterization of strain dynamics is 
vital to understanding the principles of commu
nity organization and function, but there remains 
a sizable leap in scaling from these strain-level 
dynamics to predicting community outcomes. 
Reassembling and integrating these pathways to 
study how they deliver emergent behaviors and 
system-wide consequences is a ‘constructionist’ 
task. In silico techniques, fusing biological data 
with modeling, can accomplish this.

In silico models: from individual microbes to 
community outcomes

In silico modeling relies on computer algorithms 
that recapitulate microbial and host dynamics. 
Such models integrate data from different modes 
of study and at varying biological scales, spanning 
metabolites, cells, communities, and the entire gut 
ecosystem with the aim of reproducing outcomes 
observed in real-world systems. In so doing, they 
seek to explain these emergent outcomes as mani
festing from individual molecule- and cell-level 
dynamics. Validated models can be tremendously 
insightful: being computer code, they present no 
limits for intervention or spatiotemporal observa
tion scope. Putative targets for intervention can be 
rapidly and systematically explored for their effects. 

Models can be used in a predictive capacity, explor
ing possible interventions to achieve a desired 
outcome.

Models can aid understanding of a system’s 
operation, elucidating the fundamental mechanistic 
principles underpinning the system through sim
plification to the most essential components and 
their interactions. Simplifying can mean modeling 
a subset of the full system, and can entail amalga
mating distinct components (cells, molecules, path
ways) with similar function or that constitute 
a module of given function (e.g. multi-organism 
networks) into a single-component types.109

Agent-based modeling (ABM) is one such 
‘abstractive’ technology. ABMs can capture spa
tially explicit, heterogeneous environments occu
pied by discrete, dynamic agents whose 
interactions give rise to complex emergent 
outcomes.109 Modeled agents encode behavioral 
responses to environmental stimuli and interac
tions with one another which are dependent on 
an agent’s state: the result of its past experiences. 
With microbiome phylogenetic diversity exceeding 
functional diversity,110 findings reported in terms 
of phylogenetic taxonomies have become increas
ingly complicated to interpret.111 Interpretation 
through functional units and their interactions 
may prove more tractable and informative. ABM 
was used to abstract the gut microbiome into six 
trophic guilds that represented distinct nutritional 
strategies,40 thus distilling hundreds of stains into 
far fewer and functionally distinct terms. This 
model demonstrated that microbial strategies for 
acquiring nitrogen from either dietary or endogen
ous sources could explain the variation in commu
nity composition observed across a broad range of 
mouse diets. The model revealed ecosystem 
dynamics, explaining changes in community com
position in terms of which nutrients were limiting 
the growth of each microbial cell; those cells’ nutri
tional environments as resulting from diet, host 
digestion, and endogenous substrate provision; 
and how effectively cells were competing for nutri
ents. Such mechanistic insight would have proven 
difficult to obtain through the lenses of phyloge
netic and gene cataloging. This study also exempli
fies the high-throughput of in silico modeling: 250 
‘mice’ administered varying diets were readily 
simulated within hours, whereas the corresponding 
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in vivo work was a huge undertaking spanning 
many months.40 By offering unparalleled tracing 
of spatiotemporal dynamics, ABMs have shown 
how modifications in host epithelial secretions 
shift the microbial community112 and how isolated 
and aggregated feedback mechanisms (toxin- 
antitoxin, substrate sharing and antibiotic resis
tance dynamics) impacted gut microbiome resili
ence to common stressors (e.g. antibiotic 
therapy).113 These insights would have proven 
complicated to extract from real-world observa
tions. Thus, ABMs can trace microbial dynamics 
to reveal the governing ecological principles at the 
single-cell level and what their community-level 
consequences are.

Not all modeling approaches strive for simplifi
cation, and models emphasizing capture of real- 
world detail seek to quantitatively explain real- 
world phenomena in those same terms. Genome 
Scale Models (GSMs) are one such technology. 
They are reconstructions of a cell’s genome- 
encoded metabolic pathways and networks,114 

and simulations of communities are emerging.115 

A common GSM application is to estimate 
a configuration of ‘fluxes’ (throughputs) through 
metabolic pathways that maximize organism 
growth rate(s) in a given metabolic environment: 
‘flux balance analysis’.116,117 GSMs offer ease of 

systematic exploration of the nutritional dimen
sion, allowing the sampling of hundreds of media 
formulations in a matter of hours. The technology 
can substitute for arduous in vitro culturing work 
to determine a strain’s nutritional growth require
ments. For instance, an A. muciniphila GSM pre
dicted the commensal could utilize a number of 
monosaccharides derived from mucin, findings 
that were subsequently validated in vitro.118 

Similarly, GSMs have been used to identify the 
minimal media needed for Faecalibacterium 
prausniitzii119 and Bacteroides caccae,120 resulting 
in their successful culturing. Beyond determining 
strain niches, growth rates and metabolic output 
yields are potentially determinable through GSMs, 
but these are sensitive to bounds on nutritional 
uptake and biomass generation rates that are pre
sently unknown for most strains. If these upper 
rate bounds can be determined through targeted 
in vitro cultures, and are otherwise invariant to 
nutritional context, then growth and metabolic 
output rates for very broad combinations of 
media could also be rapidly estimated in silico 
and thus save considerable in vitro effort.

GSMs can now be simulated in consortia and 
have provided insight into the ecological principles 
that underpin emergent community outcomes. 
This technology enables tracing of strain-level 

Table 1. List of recommended computational resources for gut microbiome in silico modeling.
Resource Summary Available from

Personal 
computer

Most in silico based approaches can be ran on a basic personal 
computer. High specifications (e.g. 8GB of RAM or higher) are 
recommended to reduce modeling times

High 
performance 
computing 
cluster

A network of fast interconnected computer servers that are more 
practical for running either: 1) very large scale simulations that 
a personal computer would struggle to handle or 2) very high- 
throughput experiments (many simulations) that a computing 
cluster can run in a massively parallel fashion.

Most universities and research institutes now provide such facilities 
at modest, if not zero, cost. Alternatively, cloud-based systems 
such as Amazon Web Services could be set up to support such 
work, though this often comes at a cost.

COBRA 
Toolbox132

MATLAB-based software suite for modeling genome-scale metabolic 
networks and predicting phenotypes

https://opencobra.github.io/cobratoolbox/stable/index.html

COBRApy133 Python package for modeling and analyzing genome-scale 
metabolic networks

https://opencobra.github.io/cobrapy/

MICOM115 Python package for metabolic modeling of microbial communities https://github.com/micom-dev/micom
μbialSim A dynamic Flux-Balance-Analysis-based simulator for complex 

microbial communities
https://git.ufz.de/UMBSysBio/microbialsim

AutoKEEGRec134 A KEGG databases-based tool to create draft GSMs and community 
reconstructions, that is compatible with COBRA Toolbox

https://almaaslab.nt.ntnu.no/index.php/resources/

ModelSEED135 A web resource to create GSMs from Rapid Annotation of microbial 
genomes using Subsystems Technology (RAST)

https://modelseed.org/

KBase136 Open source platform that allows the creation and curation of GSMs 
among other functions

https://kbase.us/applist/

AGORA120 A collection of 818 GSMs for human gut microbes compatible with 
COBRA Toolbox and COBRApy

https://www.vmh.life/#microbes/search

GutSim40 An ABM that integrates gut environmental pressures such as 
peristalsis, mucin secretion and host feeding regimens.

https://github.com/marknormanread/GutSim
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metabolic activities, and how their survival strate
gies vary with changing community contexts. For 
instance, using GSMs, a behavior was observed 
wherein one microbial guild’s reduction of growth 
rate (70% of its community-specific maximum 
growth rate) when paired with another guild 
allowed for an increased total community biomass, 
thus improving community-level fitness.121 

Similarly, over 800 GSM microbial communities 
were assembled and assessed in terms of competi
tion and cooperation dynamics and showed that 
whilst competition was the predominant interac
tion across the community, modules of up to four 
cooperating strains persisted across 
communities.122 The metabolites that were coop
eratively exchanged were also identifiable.122 Such 
understanding is key for rational intervention 
design as it explains the underlying ecology that is 
difficult to otherwise interrogate through non-in 
silico means. Lastly, GSM consortia’s capture of 
community ecology has enabled successful predic
tion of intervention outcomes. This was accom
plished for two groups of human patients differing 
in insulin resistance profiles;123 GSM consortia 
reflecting patient microbiomes correctly predicted 
changes in stool amino acid and SCFA levels under 
a dietary intervention that was subsequently admi
nistered to the humans. Thus, there is a potential 
role for GSM technology to guide intervention 

design and choice. Although useful, GSM technol
ogy caries some caveats, namely omitting genome 
regulatory networks and equating the genotype and 
phenotype. Yet, GSM technology is rapidly 
advancing,114,124 and is well poised to revolutionize 
our understanding of the gut ecology.

Recently, supervised machine learning has 
shown promise in predicting physiological out
comes (e.g., post-prandial glucose response125) of 
dietary manipulation, essentially treating micro
biome–host interactions and dynamics as a ‘black 
box’. These approaches demonstrate that interven
tion outcomes can be predictable and therefore 
targeted at individuals. Yet they have limitations. 
These models are opaque and do not necessarily 
learn the true mechanisms underpinning the biol
ogy. Consequently, they may prove inaccurate in 
predicting outcomes for cases outside the training 
data’s range of intervention. Lastly, it is debatable 
how much penetration machine learning efforts 
will have if they are not accompanied by a well- 
understood mechanistic foundation.

In silico approaches offer continuous observa
tion, at high spatiotemporal resolution, of the 
nutritional environment, cellular interactions, 
internal cell state and competition dynamics, and 
facilitate simulation of multifactorial interventions. 
They cannot (yet) simulate ‘health outcomes’, as 
these are emergent from the holistic host at 

Figure 2. In vivo, in vitro and in silico methods each contribute complementary insights that are collectively necessary to understand 
gut ecology and manipulate it to achieve specific outcomes.
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a breadth current models do not capture. But they 
can model the profile of health-impacting commu
nity composition and metabolic output and the 
ecological dynamics responsible for them. GSMs 
are close to predicting these profiles for previously 
unobserved contexts, which would prove transfor
mative for targeted intervention discovery.123 This 
could be accomplished through systematic explora
tion of intervention space (e.g. the space of possible 
dietary interventions). For example, a computer 
model of an individual’s gut microbiome (profiling 
of in vivo communities) could be constructed and 
used to predict the outcomes for an intervention 
based on the fiber inulin, accounting for: which 
strains can catabolize it (based on in vitro experi
mentation) and are they competitive to do so given 
the community; which metabolites will be gener
ated from inulin based on this profile; how these 
metabolites will impact other strains and how this 
will ultimately impact the community’s composi
tion and metabolic output. Such study is easily 
repeated with variation to investigate how out
comes relate, potentially non-linearly, with fiber 
dosage. To conclude, evidence-based in silico meth
ods can offer unparalleled experimental resolution 
and traceability at the spatial-temporal and biolo
gical levels.

Practical considerations for in silico modeling

ABM encompasses considerable flexibility in how 
the target biology is represented within the model, 
and this translates to models that require substan
tial custom computer code to implement. Which 
cells, pathways, molecules, and environmental fea
tures a given model captures is typically entirely 
bespoke to the given research context. Such flex
ibility complicates the generation of ‘one size fits 
all’ generalized simulation frameworks – lacking 
a standardization of what should be simulated and 
how, such frameworks would need to be vastly 
complicated in catering for all possibilities, and 
thus they instead typically represent very abstract 
and general tools that can require considerable 
custom code to adopt into a specific simulation.126 

Our lab’s ARTIMMUS127 and MotiliSim128 agent- 
based models are built atop the MASON agent- 
based simulation framework,129 and yet encompass 
several thousand lines of custom Java code each. 

The GutSim simulation is entirely custom code, 
written in Python.40 Whilst existing ABM models 
can certainly be adapted to different research ques
tions, engaging with the ABM paradigm can neces
sitate a considerable aptitude for writing computer 
code.

A key consideration for ABM technology, stem
ming from the flexibility it affords in which biolo
gical features are represented and how, is ensuring 
that ABM models correctly capture the biology and 
that they are well-calibrated against existing real- 
world data. By necessity of simulating a system that 
is incompletely understood, ABMs often encom
pass parameters that control agent behaviors for 
which appropriate values are not exactly known. 
Calibration aims to infer these values from existing 
data by exploring a range of putative parameter 
values with an aim of reproducing known results. 
Agent-based model calibration has been reviewed 
extensively elsewhere,130 and we summarize the 
salient points here. Calibration requires data 
describing target system behaviors, and there is no 
minimum threshold for this – more is better but 
with a diminishing return on additional data. 
Ideally, multiple real-world experiments will be 
used in calibration,131 as these perturb the real- 
world system (and thus the simulation in attempt
ing to reproduce real-world results) in different 
ways, targeting various cells, pathways, genes, 
molecules, etc. This encourages the full range of 
each agent’s possible behaviors to be exercised 
and assessed. Thus, ideally, data or knowledge 
describing the behaviors, rates, probabilities, tim
ings, etc., of each individual model component (e.g. 
strain) can be provided, but failing this, higher-level 
data (e.g. at community composition-level) 
describing how the biological system behaves both 
‘normally’ and under perturbation can facilitate 
calibration efforts.

ABM models are not necessarily computation
ally expensive to run (Table 1). The scale of the 
simulation, in terms of number of agents (e.g. cells), 
size, complexity and detail of the physical simulated 
space can often be adjusted, and these are the chief 
determinants of how much computational power 
and time is needed for the simulations to execute. 
In our lab, we have often prototyped models on 
personal computers before deploying them on 
a high-performance computing (HPC) facility to 
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execute many more replicates and experimental 
variations at a larger-scale than a personal compu
ter could accommodate. Access to HPC facilities is 
rarely prohibitive these days, with most research 
institutes either providing them directly or facilitat
ing access to shared utilities. Thus, the biggest 
resource needed in engaging with ABM technology 
is time and personnel in building the models. 
Relative to this, experimentation with the models 
is relatively swift and the software tools are either 
cheap or free to use. Model building is rarely done 
in a timeframe less than months, with calibration 
and exploration of which biological features to 
include, and how, taking the most time – writing 
code is easy, demonstrating and arguing that the 
code correctly captures the target biology is what 
takes time.137 This is an important (and easily over
looked) consideration, as without it results are mis
leading rather than insightful. Planning 
experiments to verify model predictions (whatever 
they may be; this is problem-specific) is 
a worthwhile activity to budget for and if successful 
can hugely elevate the work’s impact.

Growing support around GSM has contributed 
a rich, accessible, and growing ecosystem of tools 
for the further development and application of this 
technology. Free online tools such as 
AutoKEGGReg134 and ModelSEED135 allow the 
generation of draft GSMs based on annotated gen
omes. Curated GSMs are commonly made freely 
available by researchers specialized in the matter, 
and the tools to simulate them are likewise freely 
accessible (Table 1). Curation can be the most time- 
consuming step of the GSM assembly process. 
GSMs are complicated, and manual critical inspec
tion and verification against known organism beha
vior by a specialist cannot be avoided. Most readily 
available gut microbiome GSMs have been rigor
ously curated at a qualitative level of which meta
bolic reactions a given strain is capable of. 
However, we are not aware of any GSMs for 
which the upper bounds on reaction rates have 
been comprehensively calibrated. This is an impor
tant omission, as these reaction rate bounds ulti
mately constrain maximum growth rates, and thus 
community composition and metabolic output out
comes. Not knowing these upper bounds limits the 
extent to which GSMs can be used as faithful sur
rogates for real communities in predicting 

outcomes to putative interventions (i.e. where 
these outcomes are not already known and thus 
cannot be calibrated against). There is enormous 
upside in establishing these reaction rate limits, as 
the search for interventions that deliver targeted 
outcomes could then be automated and run in 
a massively parallel fashion on a HPC using GSM 
technology as faithful surrogates for the real com
munity. Importantly, for a given GSM/strain, these 
rates could be inferred through a combination of 
in vitro culturing where specific growth rates, sub
strate uptake, and metabolite production rates can 
be established across a variety of media formula
tions, and through automated calibration meth
odologies that find parameter values that best 
recapitulate all these in vitro-observed strain beha
viors simultaneously.131

GSM technology can be relatively straightfor
ward to engage with. GSMs are built upon indivi
dual strain genomes, independently of one another, 
forming modules that can then be simulated indi
vidually or combined into communities in a ‘plug 
and play’ fashion. The COBRA132 and 
COBRApy133 toolboxes cater for individual GSM 
simulations, and frameworks such as MICOM115 

and µbialSim138 support GSM simulations of com
munities. Coding proficiency in Python or 
MATLAB is required. Simulations of individual 
GSMs or simple consortia can be conducted on 
a personal computer, but HPC access is advisable 
for large communities or very broad experimental 
designs, such as extensive systematic exploration of 
nutritional variations or community memberships.

Conclusion

The gut microbiome impacts host health and has 
emerged as a therapeutic target. The therapeutic 
value of currently available interventions, e.g. pre
biotics, probiotics, or diet, is contingent on how 
they integrate within a host’s existing gut 
ecosystem.9 Yet this differs between hosts, and as 
such outcomes are divergent. Better design and 
targeting of interventions requires improved 
understanding of the ecological processes under
lying microbiome composition and function. In 
vivo approaches have revealed the breadth and nat
ure of interactions between host and microbiome; 
these are multiple and have non-linear, context- 
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dependent effects. These interactions are 
a culmination of intertwined processes that shape 
both host and microbiome. However, in vivo 
approaches struggle to isolate and probe individual 
ecological processes at fine spatiotemporal resolu
tion. Through in vivo approaches we understand 
which microbial outputs impact host health, but 
not why or how such outputs emerge as key factors 
across differing contexts and individuals. In vitro 
approaches permit isolation and study of particular 
microbes and pathways in broad environmental 
contexts. They reveal the cellular behaviors upon 
which an ecology is built. Yet the number of 
microbes, unique consortia and unique environ
mental contexts that exist represent 
a combinatorial explosion that is insurmountable 
to study purely in vitro. Further, in vitro technolo
gies cannot capture the breadth of complexity 
within the host, and thus cannot integrate all rele
vant pathways, or reveal critical ecological para
meters such as cellular nutritional state and 
competition dynamics, without disturbing or 
destroying the system. We have argued here that 
in silico approaches can span this divide. Genome- 
scale models can broadly supplement in vitro cul
turing efforts, though tuning and corroboration 
through in vitro means are necessary. In silico mod
els enable observation and experimentation that 
reveal how cell-level behaviors underpin ecological 
processes to generate community-level outputs of 
relevance to the host (Figure 2). In silico techniques 
are undergoing rapid advancement and their full 
potential is as yet untapped. Efforts to functionally 
annotate genomes are accelerating, giving rise to 
increasing numbers of bacteria GSMs.120 Yet, their 
adoption is sparse relative to in vitro and in vivo 
experimental research.

There are aspects of the gut microbiome that 
influence health outcomes and are difficult to inter
rogate experimentally, but which could be amend
able to study through computational modeling 
technologies. The non-bacterial (archaea, fungal, 
viral) gut microbiome is gaining recognition for 
its impact on host health,7,8 though such investiga
tions are as yet scarce. Since in silico investigations 
rely on in vitro- and in vivo-derived data, explora
tion of the non-bacterial gut microbiome through 
computational modeling approaches will take some 
time to become established at scale. However, there 

is progress: GSMs of gut methanogenic archaea 
species have been added to AGORA120 and GSMs 
of (non-gut) protozoa can be found as part of the 
BiGG Models knowledgebase.139 Similarly, GSMs 
of fungal gut commensals and opportunistic patho
gens have emerged in recent years.140,141 GSM has 
limited capacity to represent phages, however, as 
these viruses are not metabolically self-sufficient 
organisms. ABMs could represent the effects of 
phage-infection, and other behavior-modifying 
phenomena such as horizontal gene transfer 
(HGT). For instance, an ABM that explores bac
teria-phage interactions at the community level and 
their effect on antibiotic resistance has already been 
developed,142 but this did not concern the gut 
microbiome specifically. Similarly, modeling efforts 
have been made toward the study of bacteria–bac
teria HGT at the community level.143–144 

Furthermore, ABM has scope for the study of spa
tiotemporal dynamics of mucosa-associated micro
biome, offering some advantages over in vitro 
continuous fermentation models. For example, 
M-SHINE relied on static mucin-covered micro
cosms to replicate a mucin layer,106 whereas 
GutSim readily simulated real-world continuous 
mucin secretion patterns.40 We are unaware of 
any agent-based models that explicitly distinguish 
mucosal from luminal microbial communities, 
though it is not conceptually difficult to do so by, 
e.g., simulating an additional spatial dimension in 
GutSim. Detailed spatiotemporal analysis, beyond 
what is possible in vivo, would thus be possible.

Scientific investigations that integrate in vitro, in vivo 
and in silico perspectives are key to enable the knowledge 
that would move the field of personalized interventions 
forward. However, such efforts are exceedingly rare as 
research groups seldom possess deep capacity in all 
three. This is necessarily a broadly inter-disciplinary 
venture encompassing clinical and animal studies, anae
robic microbial culturing and bioengineering, omics, 
mathematics, and computer science. Dialog between 
these disciplines is not always easily established but 
should be encouraged, as should collaboration between 
research groups that specialize in these techniques. 
Education is already shifting to i) give biologists and 
health-care practitioners exposure to data and modeling, 
and ii) give a greater focus on clinical and biological 
application in engineering programs. The forthcoming 
convergence between disciplines together with our 
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proposed integration of in vivo, in vitro, and in silico 
technologies will reveal the mechanistic underpinnings 
required for the design of rational interventions targeting 
the diet-gut microbiome-host system.

List of abbreviations

SCFAs: Short-chain fatty acids
MAMPs: Microbe-associated molecular patterns
LPS: Lipopolysaccharide
SHINE: Simulator of the human intestinal microbial ecosystem
M-SHINE: Mucin-simulator of the human intestinal micro

bial ecosystem
ABM: Agent-based modeling/model
GSM: Genome-scale modeling/model
ARTIMMUS: artificial murine multiple-sclerosis simulation
MASON: Multiagent simulator of neighborhoods
COBRA: Constraint-based reconstruction analysis
KEGG: Kyoto encyclopedia of genes and genomes
AGORA: Assembly of gut organisms through reconstruction 

and analysis
HGT: Horizontal gene transfer

Authors’ contributions

MNR conceived of the study. JPMO reviewed the literature. JPMO 
and MNR wrote the manuscript with input from all authors.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the University of Sydney’s Centre 
for Advanced Food and Engineering. JPMO acknowledges 
a PhD scholarship from the Faculty of Engineering at the 
University of Sydney. ERS acknowledges the financial support 
from the à Beckett Cancer Research Trust (University of 
Sydney Fellowship).

ORCID

Dale D. McClure http://orcid.org/0000-0001-6790-5179

References

1. Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, 
Goedert JJ, Hayes RB, Yang L. Human gut microbiome 
and risk for colorectal cancer. J Natl Cancer Inst. 
2013;105(24):1907–1911. doi:10.1093/jnci/djt300.

2. Joossens M, Huys G, Cnockaert M, De Preter V, 
Verbeke K, Rutgeerts P, Vandamme P, Vermeire S. 
Dysbiosis of the faecal microbiota in patients with 
Crohn’s disease and their unaffected relatives. Gut. 
2011;60(5):631–637. doi:10.1136/gut.2010.223263.

3. Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, 
Waage J, Vinding RK, Schoos AMM, Kunøe A, 
Fink NR, Chawes BL, et al. Maturation of the gut micro
biome and risk of asthma in childhood. Nat Commun. 
2018;9(1):141. doi:10.1038/s41467-017-02573-2.

4. Wen L, Ley RE, Volchkov PY, Stranges PB, 
Avanesyan L, Stonebraker AC, Hu C, Wong FS, 
Szot GL, Bluestone JA, et al. Innate immunity and 
intestinal microbiota in the development of Type 1 
diabetes. Nature. 2008;455(7216):1109. doi:10.1038/ 
nature07336.

5. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, 
Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, 
Affourtit JP, et al. A core gut microbiome in obese and lean 
twins. Nature. 2009;457(7228):480. doi:10.1038/nature07540.

6. Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L, Bry L, 
Silver PA, Gerber GK. Dynamic modulation of the gut 
microbiota and metabolome by bacteriophages in 
a mouse model. Cell Host Microbe. 2019 e5;25 
(6):803–814. doi:10.1016/j.chom.2019.05.001.

7. Jhangi S, Gandhi R, Glanz B, Cook S, Nejad P, Ward D, 
Li N, Gerber G, Bry L, Weiner H. Increased Archaea 
species and changes with therapy in gut microbiome of 
multiple sclerosis subjects (S24.001). Neurology. 
2014;82(10):S24.001.

8. Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, 
Kim JI, Shadaloey SA, Wu D, Preiss P, Verma N, et al. 
The fungal mycobiome promotes pancreatic oncogen
esis via activation of MBL. Nature. 2019;574 
(7777):264–267. doi:10.1038/s41586-019-1608-2.

9. Walker AW, Ince J, Duncan SH, Webster LM, 
Holtrop G, Ze X, Brown D, Stares MD, Scott P, 
Bergerat A, et al. Dominant and diet-responsive groups 
of bacteria within the human colonic microbiota. ISME 
J. 2011;5(2):220–230. doi:10.1038/ismej.2010.118.

10. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee Y, 
De Vadder F, Arora T, Hallen A, Martens E, Björck I, 
Bäckhed F, et al. Dietary fiber-induced improvement in 
glucose metabolism is associated with increased abun
dance of. Prevotella Cell Metabolism. 2015;22 
(6):971–982. doi:10.1016/j.cmet.2015.10.001.

11. Jain U, Ver Heul AM, Xiong S, Gregory MH, 
Demers EG, Kern JT, Lai C-W, Muegge BD, 
Barisas DAG, Leal-Ekman JS, et al. Debaryomyces is 
enriched in Crohn’s disease intestinal tissue and impairs 
healing in mice. Science. 2021;371(6534):1154–1159. 
doi:10.1126/science.abd0919.

12. Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS, 
Funari V, Gargus M, Nguyen C, Sharma P, Maymi VI, 
et al. Malassezia is associated with Crohn’s disease and 
exacerbates colitis in mouse models. Cell Host Microbe. 
2019;25(3):377–388. doi:10.1016/j.chom.2019.01.007.

GUT MICROBES e1965698-13

https://doi.org/10.1093/jnci/djt300
https://doi.org/10.1136/gut.2010.223263
https://doi.org/10.1038/s41467-017-02573-2
https://doi.org/10.1038/nature07336
https://doi.org/10.1038/nature07336
https://doi.org/10.1038/nature07540
https://doi.org/10.1016/j.chom.2019.05.001
https://doi.org/10.1038/s41586-019-1608-2
https://doi.org/10.1038/ismej.2010.118
https://doi.org/10.1016/j.cmet.2015.10.001
https://doi.org/10.1126/science.abd0919
https://doi.org/10.1016/j.chom.2019.01.007


13. Read MN, Holmes AJ. Towards an integrative under
standing of diet–host–gut microbiome interactions. 
Front Immunol. 2017;8:538.

14. Lambeth SM, Carson T, Lowe J, Ramaraj T, Leff JW, 
Luo L, Bell CJ, Shah VO. Composition, diversity and 
abundance of gut microbiome in prediabetes and type 2 
diabetes. Journal of Diabetes and Obesity. 2015;2(3):1.

15. Lewis JD, Chen E, Baldassano R, Otley A, Griffiths A, 
Lee D, Bittinger K, Bailey A, Friedman E, Hoffmann C, 
et al. Inflammation, antibiotics, and diet as environ
mental stressors of the gut microbiome in pediatric 
Crohn’s disease. Cell Host Microbe. 2015;18 
(4):489–500. doi:10.1016/j.chom.2015.09.008.

16. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, 
Chen J, Fan S, Du X, et al. Gut microbiome remodeling 
induces depressive-like behaviors through a pathway 
mediated by the host’s metabolism. Mol Psychiatry. 
2016;21(6):786–796. doi:10.1038/mp.2016.44.

17. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, 
Donus C, Hardt PD. Microbiota and SCFA in lean 
and overweight healthy subjects. Obesity. 2010;18 
(1):190–195. doi:10.1038/oby.2009.167.

18. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut 
microbes associated with obesity. Nature. 2006;444 
(7122):1022–1023. doi:10.1038/4441022a.

19. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, 
Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, 
Zetterberg H, Blennow K, et al. Gut microbiome altera
tions in Alzheimer’s disease. Sci Rep. 2017;7(1):1–11. 
doi:10.1038/s41598-017-13601-y.

20. Sepehri S, Kotlowski R, Bernstein CN, Krause DO. 
Microbial diversity of inflamed and noninflamed gut 
biopsy tissues in inflammatory bowel disease. Inflamm 
Bowel Dis. 2007;13(6):675–683. doi:10.1002/ibd.20101.

21. Goodrich JK, Waters J, Poole A, Sutter J, Koren O, 
Blekhman R, Beaumont M, Van Treuren W, Knight R, 
Bell J, et al. Human genetics shape the gut microbiome. 
Cell. 2014;159(4):789–799. doi:10.1016/j.cell.2014.09.053.

22. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, 
Delzenne NM, Burcelin R. Changes in gut microbiota 
control metabolic endotoxemia-induced inflammation 
in high-fat diet–induced obesity and diabetes in mice. 
Diabetes. 2008;57(6):1470–1481.

23. Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, 
Petrosino JF, Hollister EB, Bryan Jr RM. Role of the gut 
microbiome in obstructive sleep apnea–induced hyper
tension. Hypertension. 2016;67(2):469–474.

24. Zoll J, Read MN, Heywood SE, Estevez E, Marshall JP, 
Kammoun HL, Allen TL, Holmes AJ, Febbraio MA, 
Henstridge DC. Fecal microbiota transplantation from high 
caloric-fed donors alters glucose metabolism in recipient mice, 
independently of adiposity or exercise status. American Journal 
of Physiology-Endocrinology and Metabolism. 2020.

25. Menni C, Jackson MA, Pallister T, Steves CJ, Spector 
TD, Valdes AM. Gut microbiome diversity and 
high-fibre intake are related to lower long-term weight 
gain. Int J Obes. 2017;41(7):1099–1105.

26. Dash S, Clarke G, Berk M, Jacka FN. The gut micro
biome and diet in psychiatry: focus on depression. Curr 
Opin Psychiatry. 2015;28(1):1–6.

27. Zeng H, Lazarova DL, Bordonaro M. Mechanisms link
ing dietary fiber, gut microbiota and colon cancer 
prevention. World J Gastrointest Oncol. 2014;6:41.

28. Ríos-Covián D, Ruas-Madiedo P, Margolles A, 
Gueimonde M, De Los Reyes-gavilán CG, Salazar N. 
Intestinal short chain fatty acids and their link with diet 
and human health. Front Microbiol. 2016;7:185.

29. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, 
Maruya M, McKenzie CI, Hijikata A, Wong C, et al. 
Metabolite-sensing receptors GPR43 and GPR109A facilitate 
dietary fibre-induced gut homeostasis through regulation of 
the inflammasome. Nat Commun. 2015;6(p):6734.

30. Tan J, McKenzie C, Vuillermin P, Goverse G, Vinuesa C, 
Mebius R, Macia L, Mackay C. Dietary fiber and bacterial 
SCFA enhance oral tolerance and protect against food allergy 
through diverse cellular pathways. Cell Rep. 2016;15 
(12):2809–2824. doi:10.1016/j.celrep.2016.05.047.

31. Thorburn AN, McKenzie CI, Shen S, Stanley D, 
Macia L, Mason LJ, Roberts LK, Wong CHY, Shim R, 
Robert R, et al. Evidence that asthma is a developmental 
origin disease influenced by maternal diet and bacterial 
metabolites. Nat Commun. 2015;6(1):1–13. 
doi:10.1038/ncomms8320.

32. Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, 
Knight J, McKenzie C, Kranich J, Oliveira AC, 
Rossello FJ, et al. Gut microbial metabolites limit the 
frequency of autoimmune T cells and protect against 
type 1 diabetes. Nat Immunol. 2017;18(5):552–562. 
doi:10.1038/ni.3713.

33. Blachier F, Beaumont M, Kim E. Cysteine-derived 
hydrogen sulfide and gut health: a matter of endogenous 
or bacterial origin. Curr Opin Clin Nutr Metab Care. 
2019;22(1):68–75. doi:10.1097/MCO.0000000000000526.

34. Hale VL, Jeraldo P, Mundy M, Yao J, Keeney G, Scott N, 
Cheek EH, Davidson J, Greene M, Martinez C, et al. 
Synthesis of multi-omic data and community metabolic 
models reveals insights into the role of hydrogen sulfide 
in colon cancer. Methods. 2018;149:59–68. doi:10.1016/ 
j.ymeth.2018.04.024.

35. Blachier F, Mariotti F, Huneau JF, Tomé D. Effects of 
amino acid-derived luminal metabolites on the colonic 
epithelium and physiopathological consequences. 
Amino Acids. 2007;33(4):547–562. doi:10.1007/ 
s00726-006-0477-9.

36. Pedersen G, Brynskov J, Saermark T. Phenol toxicity 
and conjugation in human colonic epithelial cells. 
Scand J Gastroenterol. 2002;37(1):74–79. doi:10.1080/ 
003655202753387392.

37. McCall IC, Betanzos A, Weber DA, Nava P, Miller GW, 
Parkos CA. Effects of phenol on barrier function of 
a human intestinal epithelial cell line correlate with 
altered tight junction protein localization. Toxicol 
Appl Pharmacol. 2009;241(1):61–70. doi:10.1016/j. 
taap.2009.08.002.

e1965698-14 J. P. MOLINA ORTIZ ET AL.

https://doi.org/10.1016/j.chom.2015.09.008
https://doi.org/10.1038/mp.2016.44
https://doi.org/10.1038/oby.2009.167
https://doi.org/10.1038/4441022a
https://doi.org/10.1038/s41598-017-13601-y
https://doi.org/10.1002/ibd.20101
https://doi.org/10.1016/j.cell.2014.09.053
https://doi.org/10.1016/j.celrep.2016.05.047
https://doi.org/10.1038/ncomms8320
https://doi.org/10.1038/ni.3713
https://doi.org/10.1097/MCO.0000000000000526
https://doi.org/10.1016/j.ymeth.2018.04.024
https://doi.org/10.1016/j.ymeth.2018.04.024
https://doi.org/10.1007/s00726-006-0477-9
https://doi.org/10.1007/s00726-006-0477-9
https://doi.org/10.1080/003655202753387392
https://doi.org/10.1080/003655202753387392
https://doi.org/10.1016/j.taap.2009.08.002
https://doi.org/10.1016/j.taap.2009.08.002


38. Beyer-Sehlmeyer G, Glei M, Hartmann E, Hughes R, 
Persin C, Böhm V, Schubert R, Jahreis G, Pool-Zobel 
BL. Butyrate is only one of several growth inhibitors 
produced during gut flora-mediated fermentation of 
dietary fibre sources. British Journal of Nutrition. 
2003;90(6):1057–1070. doi:10.1079/BJN20031003.

39. Auguet M, Viossat I, Marin J-G, Chabrier P-E. Selective 
inhibition of inducible nitric oxide synthase by 
agmatine. The Japanese Journal of Pharmacology. 
1995;69(3):285–287. doi:10.1254/jjp.69.285.

40. Holmes AJ, Chew YV, Colakoglu F, Cliff JB, 
Klaassens E, Read MN, Solon-Biet SM, McMahon AC, 
Cogger VC, Ruohonen K, et al. Diet-microbiome inter
actions in health are controlled by intestinal nitrogen 
source constraints. Cell Metab. 2017;25(1):140–151. 
doi:10.1016/j.cmet.2016.10.021.

41. Marcobal A, Southwick AM, Earle KA, Sonnenburg JL. 
A refined palate: bacterial consumption of host glycans 
in the gut. Glycobiology. 2013;23(9):1038–1046. 
doi:10.1093/glycob/cwt040.

42. David LA, Maurice CF, Carmody RN, Gootenberg DB, 
Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, 
Fischbach MA, et al. Diet rapidly and reproducibly 
alters the human gut microbiome. Nature. 2014;505 
(7484):559–563. doi:10.1038/nature12820.

43. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 
Microbial degradation of complex carbohydrates in 
the gut. Gut Microbes. 2012;3(4):289–306. doi:10.4161/ 
gmic.19897.

44. Corfield AP. Mucins: a biologically relevant glycan bar
rier in mucosal protection. Biochimica Biophysica Acta 
(BBA)-General Subjects. 2015;1850:236–252.

45. Juge N. Microbial adhesins to gastrointestinal mucus. 
Trends Microbiol. 2012;20(1):30–39. doi:10.1016/j. 
tim.2011.10.001.

46. Sonnenburg JL, Angenent LT, Gordon JI. Getting a grip 
on things: how do communities of bacterial symbionts 
become established in our intestine? Nat Immunol. 
2004;5(6):569. doi:10.1038/ni1079.

47. Van Passel MW, Kant R, Zoetendal EG, Plugge CM, 
Derrien M, Malfatti SA, Chain PSG, Woyke T, Palva A, 
de Vos WM, et al. The genome of Akkermansia mucini
phila, a dedicated intestinal mucin degrader, and its use 
in exploring intestinal metagenomes. PloS One. 2011;6 
(3):e16876. doi:10.1371/journal.pone.0016876.

48. Carroll IM, Ringel-Kulka T, Keku TO, Chang Y-H, 
Packey CD, Sartor RB, Ringel Y. Molecular analysis of 
the luminal-and mucosal-associated intestinal micro
biota in diarrhea-predominant irritable bowel 
syndrome. American Journal of Physiology- 
Gastrointestinal and Liver Physiology. 2011;301(5): 
G799–G807. doi:10.1152/ajpgi.00154.2011.

49. Jones RB, Zhu X, Moan E, Murff HJ, Ness RM, 
Seidner DL, Sun S, Yu C, Dai Q, Fodor AA, et al. Inter- 
niche and inter-individual variation in gut microbial 

community assessment using stool, rectal swab, and 
mucosal samples. Sci Rep. 2018;8(1):1–12. doi:10.1038/ 
s41598-018-22408-4.

50. Islam KBMS, Fukiya S, Hagio M, Fujii N, Ishizuka S, 
Ooka T, Ogura Y, Hayashi T, Yokota A. Bile acid is 
a host factor that regulates the composition of the cecal 
microbiota in rats. Gastroenterology. 2011;141 
(5):1773–1781. doi:10.1053/j.gastro.2011.07.046.

51. Wahlström A, Sayin S, Marschall H-U, Bäckhed F. 
Intestinal crosstalk between bile acids and microbiota 
and its impact on host metabolism. Cell Metab. 2016;24 
(1):41–50. doi:10.1016/j.cmet.2016.05.005.

52. Ibrahim SA, Bezkorovainy A. Survival of Bifidobacteria 
in the presence of bile salt. J Sci Food Agric. 1993;62 
(4):351–354. doi:10.1002/jsfa.2740620407.

53. O’Keefe SJD. Diet, microorganisms and their metabo
lites, and colon cancer. Nat Rev Gastroenterol Hepatol. 
2016;13(12):691. doi:10.1038/nrgastro.2016.165.

54. Heerdt BG, Houston MA, Augenlicht LH. Potentiation 
by specific short-chain fatty acids of differentiation and 
apoptosis in human colonic carcinoma cell lines. Cancer 
Res. 1994;54:3288–3294.

55. Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica- 
Krezel L, Pearce EJ, Pearce EL, Oltz EM, 
Stappenbeck TS. The colonic crypt protects stem cells 
from microbiota-derived metabolites. Cell. 2016;165 
(7):1708–1720. doi:10.1016/j.cell.2016.05.018.

56. Barton LL, Ritz NL, Fauque GD, Lin HC. Sulfur cycling 
and the intestinal microbiome. Dig Dis Sci. 2017;62 
(9):2241–2257. doi:10.1007/s10620-017-4689-5.

57. Wallace JL, Vong L, McKnight W, Dicay M, Martin GR. 
Endogenous and exogenous hydrogen sulfide promotes 
resolution of colitis in rats. Gastroenterology. 2009 
e1;137(2):569–578. doi:10.1053/j.gastro.2009.04.012.

58. Szabo C, Hellmich MR. Endogenously produced hydro
gen sulfide supports tumor cell growth and 
proliferation. Cell Cycle. 2013;12(18):2915. 
doi:10.4161/cc.26064.

59. Terashima H, Kawamoto A, Morimoto YV, Imada K, 
Minamino T. Structural differences in the bacterial fla
gellar motor among bacterial species. Biophysics and 
Physicobiology. 2017;14:191–198. doi:10.2142/ 
biophysico.14.0_191.

60. Turner RD, Vollmer W, Foster SJ. Different walls for 
rods and balls: the diversity of peptidoglycan. Mol 
Microbiol. 2014;91(5):862–874. doi:10.1111/ 
mmi.12513.

61. Wang X, Quinn PJ. Lipopolysaccharide: biosynthetic 
pathway and structure modification. Prog Lipid Res. 
2010;49(2):97–107. doi:10.1016/j.plipres.2009.06.002.

62. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev 
Immunol. 2004;4(7):499–511. doi:10.1038/nri1391.

63. Tough DF, Sun S, Sprent J. T cell stimulation in vivo by 
lipopolysaccharide (LPS). J Exp Med. 1997;185 
(12):2089–2094. doi:10.1084/jem.185.12.2089.

GUT MICROBES e1965698-15

https://doi.org/10.1079/BJN20031003
https://doi.org/10.1254/jjp.69.285
https://doi.org/10.1016/j.cmet.2016.10.021
https://doi.org/10.1093/glycob/cwt040
https://doi.org/10.1038/nature12820
https://doi.org/10.4161/gmic.19897
https://doi.org/10.4161/gmic.19897
https://doi.org/10.1016/j.tim.2011.10.001
https://doi.org/10.1016/j.tim.2011.10.001
https://doi.org/10.1038/ni1079
https://doi.org/10.1371/journal.pone.0016876
https://doi.org/10.1152/ajpgi.00154.2011
https://doi.org/10.1038/s41598-018-22408-4
https://doi.org/10.1038/s41598-018-22408-4
https://doi.org/10.1053/j.gastro.2011.07.046
https://doi.org/10.1016/j.cmet.2016.05.005
https://doi.org/10.1002/jsfa.2740620407
https://doi.org/10.1038/nrgastro.2016.165
https://doi.org/10.1016/j.cell.2016.05.018
https://doi.org/10.1007/s10620-017-4689-5
https://doi.org/10.1053/j.gastro.2009.04.012
https://doi.org/10.4161/cc.26064
https://doi.org/10.2142/biophysico.14.0_191
https://doi.org/10.2142/biophysico.14.0_191
https://doi.org/10.1111/mmi.12513
https://doi.org/10.1111/mmi.12513
https://doi.org/10.1016/j.plipres.2009.06.002
https://doi.org/10.1038/nri1391
https://doi.org/10.1084/jem.185.12.2089


64. Bryn T, Yaqub S, Mahic M, Henjum K, Aandahl EM, 
Tasken K. LPS-activated monocytes suppress T-cell 
immune responses and induce FOXP3+ T cells through 
a COX-2–PGE2-dependent mechanism. Int Immunol. 
2008;20(2):235–245. doi:10.1093/intimm/dxm134.

65. Hajam IA, Dar PA, Shahnawaz I, Jaume JC, Lee JH. 
Bacterial flagellin—a potent immunomodulatory agent. 
Exp Mol Med. 2017 e373-e373;49(9):e373–e373. 
doi:10.1038/emm.2017.172.

66. Whang H, Mayer H, Schmidt MG, Neter E. Strain- 
related differences in immunosuppressive effects of 
Enterobacteriaceae and their lipopolysaccharides 
on production in rabbits of antibody 
to enterobacterial common antigen. Infect Immun. 
1976;13(4):1074–1079. doi:10.1128/iai.13.4.1074- 
1079.1976.

67. Manco M, Putignani L, Bottazzo GF. Gut microbiota, 
lipopolysaccharides, and innate immunity in the patho
genesis of obesity and cardiovascular risk. Endocr Rev. 
2010;31:817–844.

68. Hersoug LG, Møller P, Loft S. Gut microbiota-derived lipo
polysaccharide uptake and trafficking to adipose tissue: impli
cations for inflammation and obesity. Obesity Reviews. 
2016;17(4):297–312. doi:10.1111/obr.12370.

69. Lerouge I, Vanderleyden J. O-antigen structural varia
tion: mechanisms and possible roles in animal/plant– 
microbe interactions. FEMS Microbiol Rev. 2002;26 
(1):17–47. doi:10.1111/j.1574-6976.2002.tb00597.x.

70. Vatanen T, Kostic A, d’Hennezel E, Siljander H, 
Franzosa E, Yassour M, Kolde R, Vlamakis H, 
Arthur T, Hämäläinen A-M, et al. Variation in micro
biome LPS immunogenicity contributes to autoimmu
nity in humans. Cell. 2016;165(4):842–853. doi:10.1016/ 
j.cell.2016.04.007.

71. Steimle A, Autenrieth IB, Frick J-S. Structure and func
tion: lipid A modifications in commensals and 
pathogens. International Journal of Medical 
Microbiology. 2016;306(5):290–301. doi:10.1016/j. 
ijmm.2016.03.001.

72. Ha CW. Mechanistic links between gut microbial commu
nity dynamics, microbial functions and metabolic health. 
World Journal of Gastroenterology: WJG. 2014;20 
(44):16498–16517. doi:10.3748/wjg.v20.i44.16498.

73. Mokhtari Z, Gibson DL, Hekmatdoost A. Nonalcoholic 
fatty liver disease, the gut microbiome, and diet. 
Advances in Nutrition. 2017;8(2):240–252. doi:10.3945/ 
an.116.013151.

74. Hollander D. Intestinal permeability, leaky gut, and 
intestinal disorders. Curr Gastroenterol Rep. 1999;1 
(5):410–416. doi:10.1007/s11894-999-0023-5.

75. Sheth RU, Li M, Jiang W, Sims PA, Leong KW, 
Wang HH. Spatial metagenomic characterization of 
microbial biogeography in the gut. Nat Biotechnol. 
2019;37(8):877–883. doi:10.1038/s41587-019-0183-2.

76. Sarma-Rupavtarm RB, Ge Z, Schauer DB, Fox JG, 
Polz MF. Spatial distribution and stability of the eight 
microbial species of the altered schaedler flora in the 

mouse gastrointestinal tract. Appl Environ Microbiol. 
2004;70(5):2791–2800. doi:10.1128/AEM.70.5.2791- 
2800.2004.

77. Evans D, Pye G, Bramley R, Clark AG, Dyson TJ, 
Hardcastle JD. Measurement of gastrointestinal pH 
profiles in normal ambulant human subjects. Gut. 
1988;29(8):1035–1041. doi:10.1136/gut.29.8.1035.

78. Smith EA, Macfarlane GT. Studies on amine production in 
the human colon: enumeration of amine forming bacteria 
and physiological effects of carbohydrate and pH. Anaerobe. 
1996;2(5):285–297. doi:10.1006/anae.1996.0037.

79. Thaiss CA, Levy M, Korem T, Dohnalová L, Shapiro H, 
Jaitin DA, David E, Winter DR, Gury-BenAri M, 
Tatirovsky E, et al. Microbiota diurnal rhythmicity pro
grams host transcriptome oscillations. Cell. 2016;167 
(6):1495–1510. e12. doi:10.1016/j.cell.2016.11.003.

80. Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and 
feeding pattern affect the diurnal dynamics of the gut 
microbiome. Cell Metab. 2014;20(6):1006–1017. 
doi:10.1016/j.cmet.2014.11.008.

81. Kreft J-U, Griffin BM, González-Cabaleiro R. 
Evolutionary causes and consequences of metabolic 
division of labour: why anaerobes do and aerobes 
don’t. Curr Opin Biotechnol. 2020;62:80–87. 
doi:10.1016/j.copbio.2019.08.008.

82. Harcombe WR, Riehl W, Dukovski I, Granger B, 
Betts A, Lang A, Bonilla G, Kar A, Leiby N, Mehta P, 
et al. Metabolic resource allocation in individual 
microbes determines ecosystem interactions and spatial 
dynamics. Cell Rep. 2014;7(4):1104–1115. doi:10.1016/j. 
celrep.2014.03.070.

83. Carlson RP, Beck AE, Phalak P, Fields MW, Gedeon T, 
Hanley L, Harcombe WR, Henson MA, Heys JJ. 
Competitive resource allocation to metabolic pathways 
contributes to overflow metabolisms and emergent 
properties in cross-feeding microbial consortia. 
Biochem Soc Trans. 2018;46(2):269–284. doi:10.1042/ 
BST20170242.

84. Beaumont M, Andriamihaja M, Lan A, Khodorova N, 
Audebert M, Blouin J-M, Grauso M, Lancha L, 
Benetti P-H, Benamouzig R, et al. Detrimental effects 
for colonocytes of an increased exposure to luminal 
hydrogen sulfide: the adaptive response. Free Radic 
Biol Med. 2016;93:155–164. doi:10.1016/j. 
freeradbiomed.2016.01.028.

85. Boets E, Deroover L, Houben E, Vermeulen K, Gomand 
SV, Delcour JA, Verbeke K. Quantification of in vivo 
colonic short chain fatty acid production from inulin. 
Nutrients. 2015;7(11):8916–8929.

86. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, 
Flint HJ, Lobley GE Reduced dietary intake of carbohy
drates by obese subjects results in decreased concentra
tions of butyrate and butyrate-producing bacteria in 
feces. Appl Environ Microbiol. 2007;73(4):1073–1078.

87. Vital M, Karch A, Pieper DH. Colonic 
butyrate-producing communities in humans: an over
view using omics data. Msystems. 2017;2(6.

e1965698-16 J. P. MOLINA ORTIZ ET AL.

https://doi.org/10.1093/intimm/dxm134
https://doi.org/10.1038/emm.2017.172
https://doi.org/10.1128/iai.13.4.1074-1079.1976
https://doi.org/10.1128/iai.13.4.1074-1079.1976
https://doi.org/10.1111/obr.12370
https://doi.org/10.1111/j.1574-6976.2002.tb00597.x
https://doi.org/10.1016/j.cell.2016.04.007
https://doi.org/10.1016/j.cell.2016.04.007
https://doi.org/10.1016/j.ijmm.2016.03.001
https://doi.org/10.1016/j.ijmm.2016.03.001
https://doi.org/10.3748/wjg.v20.i44.16498
https://doi.org/10.3945/an.116.013151
https://doi.org/10.3945/an.116.013151
https://doi.org/10.1007/s11894-999-0023-5
https://doi.org/10.1038/s41587-019-0183-2
https://doi.org/10.1128/AEM.70.5.2791-2800.2004
https://doi.org/10.1128/AEM.70.5.2791-2800.2004
https://doi.org/10.1136/gut.29.8.1035
https://doi.org/10.1006/anae.1996.0037
https://doi.org/10.1016/j.cell.2016.11.003
https://doi.org/10.1016/j.cmet.2014.11.008
https://doi.org/10.1016/j.copbio.2019.08.008
https://doi.org/10.1016/j.celrep.2014.03.070
https://doi.org/10.1016/j.celrep.2014.03.070
https://doi.org/10.1042/BST20170242
https://doi.org/10.1042/BST20170242
https://doi.org/10.1016/j.freeradbiomed.2016.01.028
https://doi.org/10.1016/j.freeradbiomed.2016.01.028


88. Vital M, Howe AC, Tiedje JM. Revealing the bacterial 
butyrate synthesis pathways by analyzing (meta) geno
mic data. MBio. 2014;5(2.

89. Bourriaud C, Robins RJ, Martin L, Kozlowski F, 
Tenailleau E, Cherbut C, Michel C. Lactate is mainly 
fermented to butyrate by human intestinal microfloras 
but inter-individual variation is evident. J Appl 
Microbiol. 2005;99(1):201–212. doi:10.1111/j.1365- 
2672.2005.02605.x.

90. Reeves AR, Wang GR, Salyers AA. Characterization of 
four outer membrane proteins that play a role in utiliza
tion of starch by Bacteroides thetaiotaomicron . Journal 
of Bacteriology. 1997;179(3):643–649. doi:10.1128/ 
jb.179.3.643-649.1997.

91. Hooper LV. Wong MH, Thelin A, Hansson L, Falk PG, 
Gordon JI. Molecular analysis of commensal host-microbial 
relationships in the intestine. Science. 2001;291 
(5505):881–884. doi:10.1126/science.291.5505.881.

92. Bjursell MK, Martens EC, Gordon JI. Functional geno
mic and metabolic studies of the adaptations of 
a prominent adult human gut symbiont, Bacteroides 
thetaiotaomicron, to the suckling period. Journal of 
Biological Chemistry. 2006;281:36269–36279.

93. Van Herreweghen F, Van den Abbeele P, De Mulder T, 
De Weirdt R, Geirnaert A, Hernandez-Sanabria E, 
Vilchez-Vargas R, Jauregui R, Pieper DH, Belzer C, 
et al. In vitro colonisation of the distal colon by 
Akkermansia muciniphila is largely mucin and pH 
dependent. Benef Microbes. 2017;8(1):81–96. 
doi:10.3920/BM2016.0013.

94. Van Herreweghen F, De Paepe K, Roume H, 
Kerckhof F-M, Van de Wiele T. Mucin degradation 
niche as a driver of microbiome composition and 
Akkermansia muciniphila abundance in a dynamic gut 
model is donor independent. FEMS Microbiol Ecol. 
2018;94(12):fiy186. doi:10.1093/femsec/fiy186.

95. Degnan B, Macfarlane G. Carbohydrate utilization pat
terns and substrate preferences in Bacteroides 
thetaiotaomicron. Anaerobe. 1995;1(1):25–33. 
doi:10.1016/S1075-9964(95)80392-0.

96. Lynch JB, Sonnenburg JL. Prioritization of a plant poly
saccharide over a mucus carbohydrate is enforced by 
a Bacteroides hybrid two-component system. Mol 
Microbiol. 2012;85(3):478–491. doi:10.1111/j.1365- 
2958.2012.08123.x.

97. Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, 
isolated from human feces, that produce butyrate as 
a major fermentation product. Appl Environ 
Microbiol. 2004;70(10):5810–5817. doi:10.1128/ 
AEM.70.10.5810-5817.2004.

98. LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, 
Grimm R, Lebrilla CB, Mills DA, German JB. 
Glycoprofiling of bifidobacterial consumption of 
human milk oligosaccharides demonstrates strain spe
cific, preferential consumption of small chain glycans 
secreted in early human lactation. J Agric Food Chem. 
2007;55(22):8914–8919. doi:10.1021/jf0710480.

99. Voolapalli RK. Hydrogen production in anaerobic reac
tors during shock loads—influence of formate produc
tion and H2 kinetics. Water Res. 2001;35(7):1831–1841. 
doi:10.1016/S0043-1354(00)00441-3.

100. Laverde Gomez JA, Mukhopadhya I, Duncan SH, 
Louis P, Shaw S, Collie-Duguid E, Crost E, Juge N, 
Flint HJ. Formate cross-feeding and cooperative meta
bolic interactions revealed by transcriptomics in co- 
cultures of acetogenic and amylolytic human colonic 
bacteria. Environ Microbiol. 2019;21(1):259–271. 
doi:10.1111/1462-2920.14454.

101. Fois CAM, Le TYL, Schindeler A, Naficy S, McClure DD, 
Read MN, Valtchev P, Khademhosseini A, Dehghani F. 
Models of the gut for analyzing the impact of food and 
drugs. Adv Healthcare Mater. 2019;8(21):1900968. 
doi:10.1002/adhm.201900968.

102. Bahrami B, Child MW, Macfarlane S, Macfarlane GT. 
Adherence and cytokine induction in Caco-2 cells by 
bacterial populations from a three-stage 
continuous-culture model of the large intestine. Appl 
Environ Microbiol. 2011;77(9):2934–2942. doi:10.1128/ 
AEM.02244-10.

103. Sanderson IR. The physicochemical environment of the 
neonatal intestine. Am J Clin Nutr. 1999;69(5):1028s– 
1034s. doi:10.1093/ajcn/69.5.1028s.

104. Kim HJ, Huh D, Hamilton G, Ingber DE. Human 
gut-on-a-chip inhabited by microbial flora that experi
ences intestinal peristalsis-like motions and flow. Lab 
Chip. 2012;12(12):2165–2174. doi:10.1039/c2lc40074j.

105. McBain A, Macfarlane G. Investigations of bifidobac
terial ecology and oligosaccharide metabolism in a 
three-stage compound continuous culture system. 
Scand J Gastroenterol. 1997;32(sup222):32–40. 
doi:10.1080/00365521.1997.11720715.

106. Van den Abbeele P, Roos S, Eeckhaut V, 
MacKenzie DA, Derde M, Verstraete W, Marzorati M, 
Possemiers S, Vanhoecke B, Van Immerseel F, et al. 
Incorporating a mucosal environment in a dynamic 
gut model results in a more representative colonization 
by lactobacilli. Microb Biotechnol. 2012;5(1):106–115. 
doi:10.1111/j.1751-7915.2011.00308.x.

107. Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, 
Hugon P, Caputo A, Cadoret F, Traore SI, Seck EH, et al. 
Culture of previously uncultured members of the human gut 
microbiota by culturomics. Nature Microbiology. 2016;1 
(12):16203. doi:10.1038/nmicrobiol.2016.203.

108. Guarner F, Malagelada J-R. Gut flora in health and 
disease. The Lancet. 2003;361(9356):512–519. 
doi:10.1016/S0140-6736(03)12489-0.

109. Cosgrove J, Butler J, Alden K, Read M, Kumar V, Cucurull- 
Sanchez L, Timmis J, Coles M. Agent-based modeling in 
systems pharmacology. CPT: Pharmacometrics & Systems 
Pharmacology. 2015;4(11):615–629.

110. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T., 
Bacterial community assembly based on functional 
genes rather than species. Proceedings of the National 
Academy of Sciences, 2011. 108: p. 14288–14293.

GUT MICROBES e1965698-17

https://doi.org/10.1111/j.1365-2672.2005.02605.x
https://doi.org/10.1111/j.1365-2672.2005.02605.x
https://doi.org/10.1128/jb.179.3.643-649.1997
https://doi.org/10.1128/jb.179.3.643-649.1997
https://doi.org/10.1126/science.291.5505.881
https://doi.org/10.3920/BM2016.0013
https://doi.org/10.1093/femsec/fiy186
https://doi.org/10.1016/S1075-9964(95)80392-0
https://doi.org/10.1111/j.1365-2958.2012.08123.x
https://doi.org/10.1111/j.1365-2958.2012.08123.x
https://doi.org/10.1128/AEM.70.10.5810-5817.2004
https://doi.org/10.1128/AEM.70.10.5810-5817.2004
https://doi.org/10.1021/jf0710480
https://doi.org/10.1016/S0043-1354(00)00441-3
https://doi.org/10.1111/1462-2920.14454
https://doi.org/10.1002/adhm.201900968
https://doi.org/10.1128/AEM.02244-10
https://doi.org/10.1128/AEM.02244-10
https://doi.org/10.1093/ajcn/69.5.1028s
https://doi.org/10.1039/c2lc40074j
https://doi.org/10.1080/00365521.1997.11720715
https://doi.org/10.1111/j.1751-7915.2011.00308.x
https://doi.org/10.1038/nmicrobiol.2016.203
https://doi.org/10.1016/S0140-6736(03)12489-0


111. The Human Microbiome Project, C., et al., Structure, 
function and diversity of the healthy human 
microbiome. Nature, 2012. 486: p. 207. 7402. 
doi:10.1038/nature11234

112. Schluter J, Foster KR, Ellner SP. The evolution of mutu
alism in gut microbiota via host epithelial selection. 
PLoS Biol. 2012;10(11):e1001424. doi:10.1371/journal. 
pbio.1001424.

113. Shashkova T, Popenko A, Tyakht A, Peskov K, 
Kosinsky Y, Bogolubsky L, Raigorodskii A, 
Ischenko D, Alexeev D, Govorun V, et al. Agent based 
modeling of human gut microbiome interactions and 
perturbations. PLoS One. 2016;11(2):e0148386. 
doi:10.1371/journal.pone.0148386.

114. Magnusdottir S, Thiele I. Modeling metabolism of the 
human gut microbiome. Curr Opin Biotechnol. 
2017;51:90–96. doi:10.1016/j.copbio.2017.12.005.

115. Diener C, Gibbons SM, Resendis-Antonio O. MICOM: 
metagenome-scale modeling to infer metabolic interac
tions in the gut microbiota. Msystems. 2020;5(1.

116. Lee D-S, Burd H, Liu J, Almaas E, Wiest O, Barabasi A-L, 
Oltvai ZN, Kapatral V. Comparative Genome-Scale 
Metabolic Reconstruction and Flux Balance Analysis of 
Multiple Staphylococcus aureus Genomes Identify Novel 
Antimicrobial Drug Targets. J Bacteriol. 2009;191 
(12):4015–4024. doi:10.1128/JB.01743-08.

117. Khannapho C, Zhao H, Bonde BK, Kierzek AM, 
Avignone-Rossa CA, Bushell ME. Selection of objective 
function in genome scale flux balance analysis for process 
feed development in antibiotic production. Metab Eng. 
2008;10(5):227–233. doi:10.1016/j.ymben.2008.06.003.

118. Ottman N, Davids M, Suarez-Diez M, Boeren S, 
Schaap PJ, Martins Dos Santos VAP, Smidt H, 
Belzer C, de Vos WM. Genome-Scale Model and 
Omics Analysis of Metabolic Capacities of 
Akkermansia muciniphila Reveal a Preferential 
Mucin-Degrading Lifestyle. Appl Environ Microbiol. 
2017;83(18):e01014–17. doi:10.1128/AEM.01014-17.

119. Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen 
HJ, Thiele I. Functional metabolic map of Faecalibacterium 
prausnitzii, a beneficial human gut microbe. Journal of 
Bacteriology. 2014;196(18):3289–3302.

120. Magnusdottir S, Heinken A, Kutt L, Ravcheev DA, 
Bauer E, Noronha A, Greenhalgh K, Jäger C, 
Baginska J, Wilmes P, et al. Generation of 
genome-scale metabolic reconstructions for 773 mem
bers of the human gut microbiota. Nat Biotechnol. 
2017;35(1):81–89. doi:10.1038/nbt.3703.

121. Zomorrodi AR, Maranas CD, Rao CV. OptCom: a 
multi-level optimization framework for the metabolic model
ing and analysis of microbial communities. PLoS Comput 
Biol. 2012;8(2):e1002363. doi:10.1371/journal.pcbi.1002363.

122. Zelezniak A, Andrejev S, Ponomarova O, Mende DR, 
Bork P, Patil KR. Metabolic dependencies drive species 
co-occurrence in diverse microbial communities. 
Proceedings of the National Academy of Sciences, 
2015. 112: p. 6449–6454.

123. Shoaie S, Ghaffari P, Kovatcheva-Datchary P, 
Mardinoglu A, Sen P, Pujos-Guillot E, 
de Wouters T, Juste C, Rizkalla S, Chilloux J, 
et al. Quantifying diet-induced metabolic changes 
of the human gut microbiome. Cell Metab. 
2015;22(2):320–331. doi:10.1016/j.cmet.2015.07.001.

124. Oberhardt MA, Palsson BØ, Papin JA. Applications of 
genome-scale metabolic reconstructions. Mol Syst Biol. 
2009;5(1.

125. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, 
Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, 
Lotan-Pompan M, et al. Personalized nutrition by pre
diction of glycemic responses. Cell. 2015;163 
(5):1079–1094. doi:10.1016/j.cell.2015.11.001.

126. Abar S, Theodoropoulos GK, Lemarinier P, O’Hare GMP. 
Agent based modelling and simulation tools: a review of 
the state-of-art software. Computer Science Review. 
2017;24:13–33. doi:10.1016/j.cosrev.2017.03.001.

127. Read M, Andrews PS, Timmis J, Williams RA, 
Greaves RB, Sheng H, Coles M, Kumar V. 
Determining disease intervention strategies using spa
tially resolved simulations. PloS One. 2013;8(11): 
e80506. doi:10.1371/journal.pone.0080506.

128. Read MN, Bailey J, Timmis J, Chtanova T. Leukocyte 
motility models assessed through simulation and 
multi-objective optimization-based model selection. 
PLoS Comput Biol. 2016;12(9.

129. Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G. 
Mason: a multiagent simulation environment. 
Simulation. 2005;81(7):517–527. doi:10.1177/ 
0037549705058073.

130. Read MN, Alden K, Timmis J, Andrews PS. Strategies 
for calibrating models of biology. Brief Bioinform. 
2020;21(1):24–35.

131. Read MN, Alden K, Rose LM, Timmis J. Automated 
multi-objective calibration of biological agent-based 
simulations. Journal of the Royal Society Interface. 
2016;13(122):20160543. doi:10.1098/rsif.2016.0543.

132. Heirendt L, Arreckx S, Pfau T, Mendoza SN, 
Richelle A, Heinken A, Haraldsdóttir HS, 
Wachowiak J, Keating SM, Vlasov V, et al. 
Creation and analysis of biochemical 
constraint-based models using the COBRA Toolbox 
v. 3.0. Nat Protoc. 2019;14(3):639–702. doi:10.1038/ 
s41596-018-0098-2.

133. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. 
COBRApy: constraints-based reconstruction and ana
lysis for python. BMC Syst Biol. 2013;7(1):1–6. 
doi:10.1186/1752-0509-7-74.

134. Karlsen E, Schulz C, Almaas E. Automated generation 
of genome-scale metabolic draft reconstructions based 
on KEGG. BMC Bioinform. 2018;19(1):1–11. 
doi:10.1186/s12859-018-2472-z.

135. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, 
Stevens RL. High-throughput generation, optimization 
and analysis of genome-scale metabolic models. Nat 
Biotechnol. 2010;28(9):977–982. doi:10.1038/nbt.1672.

e1965698-18 J. P. MOLINA ORTIZ ET AL.

https://doi.org/10.1038/nature11234
https://doi.org/10.1371/journal.pbio.1001424
https://doi.org/10.1371/journal.pbio.1001424
https://doi.org/10.1371/journal.pone.0148386
https://doi.org/10.1016/j.copbio.2017.12.005
https://doi.org/10.1128/JB.01743-08
https://doi.org/10.1016/j.ymben.2008.06.003
https://doi.org/10.1128/AEM.01014-17
https://doi.org/10.1038/nbt.3703
https://doi.org/10.1371/journal.pcbi.1002363
https://doi.org/10.1016/j.cmet.2015.07.001
https://doi.org/10.1016/j.cell.2015.11.001
https://doi.org/10.1016/j.cosrev.2017.03.001
https://doi.org/10.1371/journal.pone.0080506
https://doi.org/10.1177/0037549705058073
https://doi.org/10.1177/0037549705058073
https://doi.org/10.1098/rsif.2016.0543
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1186/1752-0509-7-74
https://doi.org/10.1186/s12859-018-2472-z
https://doi.org/10.1038/nbt.1672


136. Arkin AP, Cottingham RW, Henry CS, Harris NL, 
Stevens RL, Maslov S, Dehal P, Ware D, Perez F, 
Canon S, et al. KBase: the United States department of 
energy systems biology knowledgebase. Nat Biotechnol. 
2018;36(7):566–569. doi:10.1038/nbt.4163.

137. Alden K, Andrews PS, Polack FA, Veiga-Fernandes H, 
Coles MC, Timmis J. Using argument notation to engi
neer biological simulations with increased confidence. 
Journal of the Royal Society Interface. 2015;12 
(104):20141059. doi:10.1098/rsif.2014.1059.

138. Popp D, Centler F. μbialSim: constraint-based 
dynamic simulation of complex microbiomes. 
Frontiers in Bioengineering and Biotechnology. 
2020;8:574.

139. King ZA, Lu J, Dräger A, Miller P, Federowicz S, 
Lerman JA, Ebrahim A, Palsson BO, Lewis NE. 
BiGG Models: a platform for integrating, standar
dizing and sharing genome-scale models. Nucleic 
Acids Res. 2016;44(D1(D1):D515–D522. 
doi:10.1093/nar/gkv1049.

140. Viana R, Dias O, Lagoa D, Galocha M, Rocha I, Teixeira MC. 
Genome-scale metabolic model of the human pathogen Candida 
albicans: a promising platform for drug target prediction. Journal 
of Fungi. 2020;6(3):171. doi:10.3390/jof6030171.

141. Sánchez BJ, Zhang C, Nilsson A, Lahtvee P-J, 
Kerkhoven EJ, Nielsen J. Improving the phenotype pre
dictions of a yeast genome-scale metabolic model by 
incorporating enzymatic constraints. Mol Syst Biol. 
2017;13(8):935. doi:10.15252/msb.20167411.

142. de Sousa JA, Alsaadi A, Haaber J, Ingmer H, Rocha EP. 
Modelling phage-bacteria interactions driving predation and 
horizontal gene transfer. In: BioRxiv. 2018. p. 291328.

143. van Dijk B, Hogeweg P, Doekes HM, Takeuchi N. 
Slightly beneficial genes are retained by bacteria evol
ving DNA uptake despite selfish elements. Elife. 2020;9: 
e56801. doi:10.7554/eLife.56801.

144. Prensky H, Gomez-Simmonds A, Uhlemann A-C, 
Lopatkin AJ. Conjugation dynamics depend on both the 
plasmid acquisition cost and the fitness cost. Mol Syst Biol. 
2021;17(3):e9913. doi:10.15252/msb.20209913.

GUT MICROBES e1965698-19

https://doi.org/10.1038/nbt.4163
https://doi.org/10.1098/rsif.2014.1059
https://doi.org/10.1093/nar/gkv1049
https://doi.org/10.3390/jof6030171
https://doi.org/10.15252/msb.20167411
https://doi.org/10.7554/eLife.56801
https://doi.org/10.15252/msb.20209913

	Abstract
	Introduction
	In vivo studies integrate whole gut ecosystem processes to highlight intervention targets

	Intervention targets are multiple, with broad host-microbiome molecular exchanges impacting health
	Complex community ecology underlies microbiome molecular output
	Comprehensive mapping of strain growth dynamics through in vitro study
	<italic>In silico</italic> models: from individual microbes to community outcomes

	Practical considerations for <italic>in silico</italic> modeling
	Conclusion
	List of abbreviations
	Authors’ contributions
	Disclosure statement
	Funding
	ORCID
	References

