1,673 research outputs found

    Chronic Toxoplasma Infection Modifies the Structure and the Risk of Host Behavior

    Get PDF
    The intracellular parasite Toxoplasma has an indirect life cycle, in which felids are the definitive host. It has been suggested that this parasite developed mechanisms for enhancing its transmission rate to felids by inducing behavioral modifications in the intermediate rodent host. For example, Toxoplasma-infected rodents display a reduction in the innate fear of predator odor. However, animals with Toxoplasma infection acquired in the wild are more often caught in traps, suggesting that there are manipulations of intermediate host behavior beyond those that increase predation by felids. We investigated the behavioral modifications of Toxoplasma-infected mice in environments with exposed versus non-exposed areas, and found that chronically infected mice with brain cysts display a plethora of behavioral alterations. Using principal component analysis, we discovered that most of the behavioral differences observed in cyst-containing animals reflected changes in the microstructure of exploratory behavior and risk/unconditioned fear. We next examined whether these behavioral changes were related to the presence and distribution of parasitic cysts in the brain of chronically infected mice. We found no strong cyst tropism for any particular brain area but found that the distribution of Toxoplasma cysts in the brain of infected animals was not random, and that particular combinations of cyst localizations changed risk/unconditioned fear in the host. These results suggest that brain cysts in animals chronically infected with Toxoplasma alter the fine structure of exploratory behavior and risk/unconditioned fear, which may result in greater capture probability of infected rodents. These data also raise the possibility that selective pressures acted on Toxoplasma to broaden its transmission between intermediate predator hosts, in addition to felid definitive hosts

    An ovine model of hyperdynamic endotoxemia and vital organ metabolism

    Get PDF
    BACKGROUND: Animal models of endotoxemia are frequently used to understand the pathophysiology of sepsis and test new therapies. However, important differences exist between commonly used experimental models of endotoxemia and clinical sepsis. Animal models of endotoxemia frequently produce hypodynamic shock in contrast to clinical hyperdynamic shock. This difference may exaggerate the importance of hypoperfusion as a causative factor in organ dysfunction. This study sought to develop an ovine model of hyperdynamic endotoxemia and assess if there is evidence of impaired oxidative metabolism in the vital organs. METHODS: Eight sheep had microdialysis catheters implanted into the brain, heart, liver, kidney and arterial circulation. Shock was induced with a 4hr escalating dose infusion of endotoxin. After 3hrs vasopressor support was initiated with noradrenaline and vasopressin. Animals were monitored for 12hrs after endotoxemia. Blood samples were recovered for haemoglobin, white blood cell count, creatinine and proinflammatory cytokines (IL-1Beta, IL-6 & IL-8). RESULTS: The endotoxin infusion was successful in producing distributive shock with the mean arterial pressure decreasing from 84.5 ± 12.8 mmHg to 49 ± 8.03 mmHg (p < 0.001). Cardiac index remained within the normal range decreasing from 3.33 ± 0.56 l/min/m to 2.89l ± 0.36 l/min/m (p = 0.0845). Lactate/pyruvate ratios were not significantly abnormal in the heart, brain, kidney or arterial circulation. Liver microdialysis samples demonstrated persistently high lactate/pyruvate ratios (mean 37.9 ± 3.3). CONCLUSIONS: An escalating dose endotoxin infusion was successful in producing hyperdynamic shock. There was evidence of impaired oxidative metabolism in the liver suggesting impaired splanchnic perfusion. This may be a modifiable factor in the progression to multiple organ dysfunction and death

    Geographic information system (GIS) maps and malaria control monitoring: intervention coverage and health outcome in distal villages of Khammouane province, Laos

    Get PDF
    Abstract Background Insecticide-treated nets (ITNs) are a key intervention to control malaria. The intervention coverage varies as a consequence of geographical accessibility to remote villages and limitations of financial and human resources for the intervention. People's adherence to the intervention, i.e., proper use of ITNs, also affects malaria health outcome. The study objective is to explore the impact of the intervention coverage and people's adherence to the intervention on malaria health outcome among targeted villages in various geographic locations. Methods Geographic information system (GIS) maps were developed using the data collected in an active case detection survey in Khammouane province, Laos. The survey was conducted using rapid diagnostic tests (RDTs) and a structured questionnaire at 23 sites in the province from June to July, the rainy season, in 2005. A total of 1,711 villagers from 403 households participated in the survey. Results As indicated on the GIS maps, villages with malaria cases, lower intervention coverage, and lower adherence were identified. Although no malaria case was detected in most villages with the best access to the district center, several cases were detected in the distal villages, where the intervention coverage and adherence to the intervention remained relatively lower. Conclusion Based on the data and maps, it was demonstrated that malaria remained unevenly distributed within districts. Balancing the intervention coverage in the distal villages with the overall coverage and continued promotion of the proper use of ITNs are necessary for a further reduction of malaria cases in the province.</p

    Development and internal validation of a clinical rule to improve antibiotic use in children presenting to primary care with acute respiratory tract infection and cough: a prognostic cohort study

    Get PDF
    BACKGROUND: Antimicrobial resistance is a serious threat to public health, with most antibiotics prescribed in primary care. General practitioners (GPs) report defensive antibiotic prescribing to mitigate perceived risk of future hospital admission in children with respiratory tract infections. We developed a clinical rule aimed to reduce clinical uncertainty by stratifying risk of future hospital admission. METHODS: 8394 children aged between 3 months and 16 years presenting with acute cough (for ≤28 days) and respiratory tract infection were recruited to a prognostic cohort study from 247 general practitioner practices in England. Exposure variables included demographic characteristics, parent-reported symptoms, and physical examination signs. The outcome was hospital admission for respiratory tract infection within 30 days, collected using a structured, blinded review of medical records. FINDINGS: 8394 (100%) children were included in the analysis, with 78 (0·9%, 95% CI 0·7%-1·2%) admitted to hospital: 15 (19%) were admitted on the day of recruitment (day 1), 33 (42%) on days 2-7; and 30 (39%) on days 8-30. Seven characteristics were independently associated (p<0·01) with hospital admission: age <2 years, current asthma, illness duration of 3 days or less, parent-reported moderate or severe vomiting in the previous 24 h, parent-reported severe fever in the previous 24 h or a body temperature of 37·8°C or more at presentation, clinician-reported intercostal or subcostal recession, and clinician-reported wheeze on auscultation. The area under the receiver operating characteristic (AUROC) curve for the coefficient-based clinical rule was 0·82 (95% CI 0·77-0·87, bootstrap validated 0·81). Assigning one point per characteristic, a points-based clinical rule consisting of short illness, temperature, age, recession, wheeze, asthma, and vomiting (mnemonic STARWAVe; AUROC 0·81, 0·76-0·85) distinguished three hospital admission risk strata: very low (0·3%, 0·2-0·4%) with 1 point or less, normal (1·5%, 1·0-1·9%) with 2 or 3 points, and high (11·8%, 7·3-16·2%) with 4 points or more. INTERPRETATION: Clinical characteristics can distinguish children at very low, normal, and high risk of future hospital admission for respiratory tract infection and could be used to reduce antibiotic prescriptions in primary care for children at very low risk. FUNDING: National Institute for Health Research (NIHR)

    Electronic stress tensor analysis of hydrogenated palladium clusters

    Get PDF
    We study the chemical bonds of small palladium clusters Pd_n (n=2-9) saturated by hydrogen atoms using electronic stress tensor. Our calculation includes bond orders which are recently proposed based on the stress tensor. It is shown that our bond orders can classify the different types of chemical bonds in those clusters. In particular, we discuss Pd-H bonds associated with the H atoms with high coordination numbers and the difference of H-H bonds in the different Pd clusters from viewpoint of the electronic stress tensor. The notion of "pseudo-spindle structure" is proposed as the region between two atoms where the largest eigenvalue of the electronic stress tensor is negative and corresponding eigenvectors forming a pattern which connects them.Comment: 22 pages, 13 figures, published online, Theoretical Chemistry Account

    Behavioral changes in mice caused by Toxoplasma gondii invasion of brain

    Get PDF
    Toxoplasma gondii, a protozoan parasite, is capable of infecting a broad range of intermediate warm-blooded hosts including humans. The parasite undergoes sexual reproduction resulting in genetic variability only in the intestine of the definitive host (a member of the cat family). The parasite seems to be capable of altering the natural behavior of the host to favor its transmission in the environment. The aim of this study was to evaluate the number of parasite cysts formed in the hippocampus and amygdala of experimentally infected mice as these regions are involved in defense behaviors control and emotion processing, and to assess the influence of the infection on mice behavior. The obtained results revealed the presence of parasite cysts both in the hippocampus and the amygdala of infected mice; however, no clear region-dependent distribution was observed. Furthermore, infected mice showed significantly diminished exploratory activity described by climbing and rearing, smaller preference for the central, more exposed part of the OF arena and engaged in less grooming behavior compared to uninfected controls

    Forecasting malaria incidence based on monthly case reports and environmental factors in Karuzi, Burundi, 1997–2003

    Get PDF
    BACKGROUND: The objective of this work was to develop a model to predict malaria incidence in an area of unstable transmission by studying the association between environmental variables and disease dynamics. METHODS: The study was carried out in Karuzi, a province in the Burundi highlands, using time series of monthly notifications of malaria cases from local health facilities, data from rain and temperature records, and the normalized difference vegetation index (NDVI). Using autoregressive integrated moving average (ARIMA) methodology, a model showing the relation between monthly notifications of malaria cases and the environmental variables was developed. RESULTS: The best forecasting model (R2adj = 82%, p < 0.0001 and 93% forecasting accuracy in the range +/- 4 cases per 100 inhabitants) included the NDVI, mean maximum temperature, rainfall and number of malaria cases in the preceding month. CONCLUSION: This model is a simple and useful tool for producing reasonably reliable forecasts of the malaria incidence rate in the study area

    Associations of sedentary behaviour, physical activity, blood pressure and anthropometric measures with cardiorespiratory fitness in children with cerebral palsy

    Get PDF
    Background - Children with cerebral palsy (CP) have poor cardiorespiratory fitness in comparison to their peers with typical development, which may be due to low levels of physical activity. Poor cardiorespiratory fitness may contribute to increased cardiometabolic risk. Purpose - The aim of this study was to determine the association between sedentary behaviour, physical activity and cardiorespiratory fitness in children with CP. An objective was to determine the association between cardiorespiratory fitness, anthropometric measures and blood pressure in children with CP. Methods- This study included 55 ambulatory children with CP [mean (SD) age 11.3 (0.2) yr, range 6-17 yr; Gross Motor Function Classification System (GMFCS) levels I and II]. Anthropometric measures (BMI, waist circumference and waist-height ratio) and blood pressure were taken. Cardiorespiratory fitness was measured using a 10 m shuttle run test. Children were classified as low, middle and high fitness according to level achieved on the test using reference curves. Physical activity was measured by accelerometry over 7 days. In addition to total activity, time in sedentary behaviour and light, moderate, vigorous, and sustained moderate-to-vigorous activity (≥10 min bouts) were calculated. Results - Multiple regression analyses revealed that vigorous activity (β = 0.339, p<0.01), sustained moderate-to-vigorous activity (β = 0.250, p<0.05) and total activity (β = 0.238, p<0.05) were associated with level achieved on the shuttle run test after adjustment for age, sex and GMFCS level. Children with high fitness spent more time in vigorous activity than children with middle fitness (p<0.05). Shuttle run test level was negatively associated with BMI (r2 = -0.451, p<0.01), waist circumference (r2 = -0.560, p<0.001), waist-height ratio (r2 = -0.560, p<0.001) and systolic blood pressure (r2 = -0.306, p<0.05) after adjustment for age, sex and GMFCS level. Conclusions - Participation in physical activity, particularly at a vigorous intensity, is associated with high cardiorespiratory fitness in children with CP. Low cardiorespiratory fitness is associated with increased cardiometabolic risk
    corecore