8,153 research outputs found

    Burning dynamics and in-depth flame spread of wood cribs in large compartment fires

    Get PDF
    Wood cribs pervade the fire research literature as the chosen fuel load for testing within the built environment. As such, the underpinning knowledge of fire behaviour in compartments was developed from experiments using wood cribs in small compartments. Despite the apparent incomparability of porous fuel-beds such as cribs to real solid fuels in the built environment, the role of the fuel mass transfer number (“B-Number”) in defining the compartment fire dynamics has received little attention. In the case of large open-plan compartments, the burning processes are strongly dependant on the relationship of the fuel nature and compartment geometry. To address these limitations, the physical processes in-depth and external to a spreading wood crib fire in a compartment are examined. A theory to couple these processes to a compartment is proposed and analogised into the classical “Emmons problem”, leading to a definition of a total mass transfer number for a wood crib. Comparing the theory against data from a large-scale experiment shows that the wood crib approximates steady-state burning in two regimes: a fuel-bed-controlled regime and a momentum-controlled regime. The fuel-bed-controlled regime occurs when the burning and spread rates are governed by the processes internal to the crib, and the fire behaviour is therefore defined by the crib geometry. This regime is characterised by a fire that travels or grows slowly, with small external heat fluxes. The momentum-controlled regime occurs when the fire is fully-developed and the external heat fluxes are very large. Burning rates are controlled by the residence time, with the compartment fire dynamics defined by complex transport processes associated with the momentum-driven flows external to the crib. Transitions from the fuel-bed-controlled regime to the momentum-controlled regime are driven by accelerations in the flame spread rate along the surface of the crib leading to additional energy input mechanism that is used to raise the in-depth flame spread rate of the crib. It is hypothesised that the burning mechanisms of fuels with large mass transfer numbers, such as non-charring plastics, diverge significantly from wood cribs, and therefore extrapolating test data from wood cribs fires in compartments to real fuels must be done with extreme caution. Thus, the nature of the fuel is an important and unavoidable consideration when studying the fire dynamics of large open-plan compartments

    Mechanisms of flame spread and burnout in large enclosure fires

    Get PDF
    Knowledge of the first principles defining fire behaviour in large enclosures remains limited despite their common use in modern tall buildings. The evolution of a fire in large enclosures can be defined by the relationship between the flame front and burnout velocities (VS/VBO). This relationship can be classified into three distinct fire spread modes being Mode 1 (VS/VBO → ∞), Mode 2 (VS/VBO > 1), and Mode 3 (VS/VBO ≈ 1). The mechanisms governing flame spread and burnout are investigated using four full-scale enclosure fire experiments with high porosity wood cribs with similar enclosure geometries. Flame and burnout front positions and velocities are estimated using video data. Velocities are affected by the heat feedback from the enclosure and smoke layer to the fuel. The spread velocity shows two regimes, a minimum external heat flux above which there is surface spread (q''s,min) and a heat flux that defines the onset of very rapid flame spread ((q''rs,crit)). A phenomenological model is developed to help identify the underlying mechanisms controlling the transition between the different spread modes. Both the model and data show that for wood cribs, the dependence of the burnout front velocity to the external radiation is weak, whereas the dependence of the flame spread velocity to the external and flame heat flux is strong. A transition from Mode 3 (VS/VBO ≈ 1) to Mode 2 (VS/VBO > 1) occurs with increasing external heat fluxes above q''s,min. The transition to Mode 1 (VS/VBO → ∞) is further defined once (q''rs,crit) is attained due to a sudden increase in the flame heat flux by changing the ventilation condition, or by significant increases in the external heat flux from the enclosure

    Upward Flame Spread for Fire Risk Classification of High-Rise Buildings

    Get PDF
    External fire spread has the potential to breach vertical compartmentation and violate the fire safety strategy of a building. The traditional design solution to this has been the use of non-combustible materials and spandrel panels but recent audits show that combustible materials are widespread and included in highly complex systems. Furthermore, most jurisdictions no longer require detailing of spandrel panels under many different circumstances. These buildings require rapid investigation using rational scientific methods to be able to adequately classify the fire risk. In this work, we use an extensive experimental campaign of material-scale data to explore the critical parameters driving upward flame spread. Two criteria are outlined using two different approaches. The first evaluates the time to ignition and the time to burnout to assess the ability for a fire to spread, and can be easily determined using traditional means. The second evaluates the preheated flame length as the critical parameter driving flame spread. A wide range of cladding materials are ranked according to these criteria to show their potential propensity to flame spread. From this, designers can use conservative approaches to perform fire risk assessments for buildings with combustible materials or can be used to aid decision-making. Precise estimates of flame spread rates within complex façade systems are not achievable with the current level of knowledge and will require a substantial amount of work to make progress

    Laser tweezers for atomic solitons

    Full text link
    We describe a controllable and precise laser tweezers for Bose-Einstein condensates of ultracold atomic gases. In our configuration, a laser beam is used to locally modify the sign of the scattering length in the vicinity of a trapped BEC. The induced attractive interactions between atoms allow to extract and transport a controllable number of atoms. We analyze, through numerical simulations, the number of emitted atoms as a function of the width and intensity of the outcoupling beam. We also study different configurations of our system, as the use of moving beams. The main advantage of using the control laser beam to modify the nonlinear interactions in comparison to the usual way of inducing optical forces, i.e. through linear trapping potentials, is to improve the controllability of the outcoupled solitary wave-packet, which opens new possibilities for engineering macroscopic quantum states.Comment: 6 pages, 7 figure

    A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

    Get PDF
    Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large openplan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments

    Levonorgestrel-releasing intrauterine system vs. usual medical treatment for menorrhagia: An economic evaluation alongside a randomised controlled trial

    Get PDF
    Objective: To undertake an economic evaluation alongside the largest randomised controlled trial comparing Levonorgestrel-releasing intrauterine device ('LNG-IUS') and usual medical treatment for women with menorrhagia in primary care; and compare the cost-effectiveness findings using two alternative measures of quality of life. Methods: 571 women with menorrhagia from 63 UK centres were randomised between February 2005 and July 2009. Women were randomised to having a LNG-IUS fitted, or usual medical treatment, after discussing with their general practitioner their contraceptive needs or desire to avoid hormonal treatment. The treatment was specified prior to randomisation. For the economic evaluation we developed a state transition (Markov) model with a 24 month follow-up. The model structure was informed by the trial women's pathway and clinical experts. The economic evaluation adopted a UK National Health Service perspective and was based on an outcome of incremental cost per Quality Adjusted Life Year (QALY) estimated using both EQ-5D and SF-6D. Results: Using EQ-5D, LNG-IUS was the most cost-effective treatment for menorrhagia. LNG-IUS costs £100 more than usual medical treatment but generated 0.07 more QALYs. The incremental cost-effectiveness ratio for LNG-IUS compared to usual medical treatment was £1600 per additional QALY. Using SF-6D, usual medical treatment was the most cost-effective treatment. Usual medical treatment was both less costly (£100) and generated 0.002 more QALYs. Conclusion: Impact on quality of life is the primary indicator of treatment success in menorrhagia. However, the most costeffective treatment differs depending on the quality of life measure used to estimate the QALY. Under UK guidelines LNG-IUS would be the recommended treatment for menorrhagia. This study demonstrates that the appropriate valuation of outcomes in menorrhagia is crucial. Copyright: © 2014 Sanghera et al

    Skills of different mesoscale models over Indian region during monsoon season: Forecast errors

    Get PDF
    Performance of four mesoscale models namely, the MM5, ETA, RSM and WRF, run at NCMRWF for short range weather forecasting has been examined during monsoon-2006. Evaluation is carried out based upon comparisons between observations and day-1 and day-3 forecasts of wind, temperature, speci.c humidity, geopotential height, rainfall, systematic errors, root mean square errors and specific events like the monsoon depressions. It is very difficult to address the question of which model performs best over the Indian region? An honest answer is 'none'. Perhaps an ensemble approach would be the best. However, if we must make a final verdict, it can be stated that in general, (i) the WRF is able to produce best All India rainfall prediction compared to observations in the day-1 forecast and, the MM5 is able to produce best All India rainfall forecasts in day-3, but ETA and RSM are able to depict the best distribution of rainfall maxima along the west coast of India, (ii) the MM5 is able to produce least RMSE of wind and geopotential fields at most of the time, and (iii) the RSM is able to produce least errors in the day-1 forecasts of the tracks, while the ETA model produces least errors in the day-3 forecasts

    Dark Radiation and Dark Matter in Large Volume Compactifications

    Full text link
    We argue that dark radiation is naturally generated from the decay of the overall volume modulus in the LARGE volume scenario. We consider both sequestered and non-sequestered cases, and find that the axionic superpartner of the modulus is produced by the modulus decay and it can account for the dark radiation suggested by observations, while the modulus decay through the Giudice-Masiero term gives the dominant contribution to the total decay rate. In the sequestered case, the lightest supersymmetric particles produced by the modulus decay can naturally account for the observed dark matter density. In the non-sequestered case, on the other hand, the supersymmetric particles are not produced by the modulus decay, since the soft masses are of order the heavy gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE

    LRX Proteins play a crucial role in pollen grain and pollen tube cell wall development

    Get PDF
    Leucine-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal leucine-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis thaliana. Mutations in multiple pollen-expressed lrx genes causes severe defects in pollen germination and pollen tube (PT) growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the PT growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modelling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics

    Collaborative team training in virtual reality is superior to individual learning for performing complex open surgery: a randomised controlled trial

    Get PDF
    Objective: To assess if multiplayer virtual reality (VR) training was superior to single player training for acquisition of both technical and non-technical skills in learning complex surgery. Summary Background Data: Superior team-work in the operating room (OR) is associated with improved technical performance and clinical outcomes. VR can successfully train OR staff individually, however VR team training has yet to be investigated. Method: Forty participants were randomised to individual or team VR training. Individually-trained participants practiced alongside virtual avatar counterparts, whilst teams trained live in pairs. Both groups underwent five VR training sessions over 6-weeks. Subsequently, they underwent a real-life assessment in which they performed Anterior Approach Total Hip Arthroplasty (AA-THA) surgery on a high-fidelity model with real equipment in a simulated OR. Teams performed together and individually-trained participants were randomly paired up. Videos were marked by two blinded assessors recording the NOTSS, NOTECHS II and SPLINTS scores. Secondary outcomes were procedure time and number of technical errors. Results: Teams outperformed individually-trained participants for non-technical skills in the real-world assessment (NOTSS 13.1±1.5 vs 10.6±1.6, P=0.002, NOTECHS-II score 51.7±5.5 vs 42.3±5.6, P=0.001 and SPLINTS 10±1.2 vs 7.9±1.6, P=0.004). They completed the assessment 28.1% faster (27.2 minutes±5.5 vs 41.8 ±8.9, P<0.001), and made fewer than half the number of technical errors (10.4±6.1 vs 22.6±5.4, P<0.001). Conclusions: Multiplayer training leads to faster surgery with fewer technical errors and the development of superior non-technical skills
    • 

    corecore