244 research outputs found

    On the Action of Cyclosporine A, Rapamycin and Tacrolimus on M. avium Including Subspecies paratuberculosis

    Get PDF
    BACKGROUND: Mycobacterium avium subspecies paratuberculosis (MAP) may be zoonotic. Recently the "immuno-modulators" methotrexate, azathioprine and 6-MP and the "anti-inflammatory" 5-ASA have been shown to inhibit MAP growth in vitro. We concluded that their most plausible mechanism of action is as antiMAP antibiotics. The "immunosuppressants" Cyclosporine A, Rapamycin and Tacrolimus (FK 506) treat a variety of "autoimmune" and "inflammatory" diseases. Rapamycin and Tacrolimus are macrolides. We hypothesized that their mode of action may simply be to inhibit MAP growth. METHODOLOGY: The effect on radiometric MAP (14)CO(2) growth kinetics of Cyclosporine A, Rapamycin and Tacrolimus on MAP cultured from humans (Dominic & UCF 4) or ruminants (ATCC 19698 & 303) and M. avium subspecies avium (ATCC 25291 & 101) are presented as "percent decrease in cumulative GI" (%-DeltacGI.) PRINCIPAL FINDINGS: The positive control clofazimine has 99%-DeltacGI at 0.5 microg/ml (Dominic). Phthalimide, a negative control has no dose dependent inhibition on any strain. Against MAP there is dose dependent inhibition by the immunosuppressants. Cyclosporine has 97%-DeltacGI by 32 microg/ml (Dominic), Rapamycin has 74%-DeltacGI by 64 microg/ml (UCF 4) and Tacrolimus 43%-DeltacGI by 64 microg/ml (UCF 4) CONCLUSIONS: We show heretofore-undescribed inhibition of MAP growth in vitro by "immunosuppressants;" the cyclic undecapeptide Cyclosporine A, and the macrolides Rapamycin and Tacrolimus. These data are compatible with our thesis that, unknowingly, the medical profession has been treating MAP infections since 1942 when 5-ASA and subsequently azathioprine, 6-MP and methotrexate were introduced in the therapy of some "autoimmune" and "inflammatory" diseases

    Head CT is of limited diagnostic value in critically ill patients who remain unresponsive after discontinuation of sedation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prolonged sedation is common in mechanically ventilated patients and is associated with increased morbidity and mortality. We sought to determine the diagnostic value of head computed tomography (CT) in mechanically ventilated patients who remain unresponsive after discontinuation of sedation.</p> <p>Methods</p> <p>A retrospective review of adult (age >18 years of age) patients consecutively admitted to the medical intensive care unit of a tertiary care medical center. Patients requiring mechanical ventilation for management of respiratory failure for longer than 72 hours were included in the study group. A group that did not have difficulty with awakening was included as a control.</p> <p>Results</p> <p>The median time after sedation was discontinued until a head CT was performed was 2 days (interquartile range 1.375–2 days). Majority (80%) of patients underwent head CT evaluation within the first 48 hours after discontinuation of sedation. Head CT was non-diagnostic in all but one patient who had a small subarachnoid hemorrhage. Twenty-five patients (60%) had a normal head CT. Head CT findings did not alter the management of any of the patients. The control group was similar to the experimental group with respect to demographics, etiology of respiratory failure and type of sedation used. However, while 37% of subjects in the control group had daily interruption of sedation, only 19% in the patient group had daily interruption of sedation (p < 0.05).</p> <p>Conclusion</p> <p>In patients on mechanical ventilation for at least 72 hours and who remain unresponsive after sedative discontinuation and with a non-focal neurologic examination, head CT is performed early and is of very limited diagnostic utility. Routine use of daily interruption of sedation is used in a minority of patients outside of a clinical trial setting though it may decrease the frequency of unresponsiveness from prolonged sedation and the need for head CT in patients mechanically ventilated for a prolonged period.</p

    Genetic Loci Involved in Antibody Response to Mycobacterium avium ssp. paratuberculosis in Cattle

    Get PDF
    Background: Mycobacterium avium subsp. paratuberculosis (MAP) causes chronic enteritis in a wide range of animal species. In cattle, MAP causes a chronic disease called Johne's disease, or paratuberculosis, that is not treatable and the efficacy of vaccine control is controversial. The clinical phase of the disease is characterised by diarrhoea, weight loss, drop in milk production and eventually death. Susceptibility to MAP infection is heritable with heritability estimates ranging from 0.06 to 0.10. There have been several studies over the last few years that have identified genetic loci putatively associated with MAP susceptibility, however, with the availability of genome-wide high density SNP maker panels it is now possible to carry out association studies that have higher precision. Methodology/Principal Findings: The objective of the current study was to localize genes having an impact on Johne's disease susceptibility using the latest bovine genome information and a high density SNP panel (Illumina BovineSNP50 BeadChip) to perform a case/control, genome-wide association analysis. Samples from MAP case and negative controls were selected from field samples collected in 2007 and 2008 in the province of Lombardy, Italy. Cases were defined as animals serologically positive for MAP by ELISA. In total 966 samples were genotyped: 483 MAP ELISA positive and 483 ELISA negative. Samples were selected randomly among those collected from 119 farms which had at least one positive animal. Conclusion/Significance: The analysis of the genotype data identified several chromosomal regions associated with disease status: a region on chromosome 12 with high significance (P<5 710-6), while regions on chromosome 9, 11, and 12 had moderate significance (P<5 710-5). These results provide evidence for genetic loci involved in the humoral response to MAP. Knowledge of genetic variations related to susceptibility will facilitate the incorporation of this information into breeding programmes for the improvement of health status

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    Rapid and Sensitive Detection of an Intracellular Pathogen in Human Peripheral Leukocytes with Hybridizing Magnetic Relaxation Nanosensors

    Get PDF
    Bacterial infections are still a major global healthcare problem. The quick and sensitive detection of pathogens responsible for these infections would facilitate correct diagnosis of the disease and expedite treatment. Of major importance are intracellular slow-growing pathogens that reside within peripheral leukocytes, evading recognition by the immune system and detection by traditional culture methods. Herein, we report the use of hybridizing magnetic nanosensors (hMRS) for the detection of an intracellular pathogen, Mycobacterium avium spp. paratuberculosis (MAP). The hMRS are designed to bind to a unique genomic sequence found in the MAP genome, causing significant changes in the sample’s magnetic resonance signal. Clinically relevant samples, including tissue and blood, were screened with hMRS and results were compared with traditional PCR analysis. Within less than an hour, the hMRS identified MAP-positive samples in a library of laboratory cultures, clinical isolates, blood and homogenized tissues. Comparison of the hMRS with culture methods in terms of prediction of disease state revealed that the hMRS outperformed established culture methods, while being significantly faster (1 hour vs 12 weeks). Additionally, using a single instrument and one nanoparticle preparation we were able to detect the intracellular bacterial target in clinical samples at the genomic and epitope levels. Overall, since the nanoparticles are robust in diverse environmental settings and substantially more affordable than PCR enzymes, the potential clinical and field-based use of hMRS in the multiplexed identification of microbial pathogens and other disease-related biomarkers via a single, deployable instrument in clinical and complex environmental samples is foreseen

    Perivascular Adipose Tissue and Its Role in Type 2 Diabetes and Cardiovascular Disease

    Get PDF
    Obesity is associated with insulin resistance, hypertension, and cardiovascular disease, but the mechanisms underlying these associations are incompletely understood. Microvascular dysfunction may play an important role in the pathogenesis of both insulin resistance and hypertension in obesity. Adipose tissue-derived substances (adipokines) and especially inflammatory products of adipose tissue control insulin sensitivity and vascular function. In the past years, adipose tissue associated with the vasculature, or perivascular adipose tissue (PAT), has been shown to produce a variety of adipokines that contribute to regulation of vascular tone and local inflammation. This review describes our current understanding of the mechanisms linking perivascular adipose tissue to vascular function, inflammation, and insulin resistance. Furthermore, we will discuss mechanisms controlling the quantity and adipokines secretion by PAT

    Modulation of vascular reactivity by perivascular adipose tissue (PVAT)

    Get PDF
    Purpose of Review: In this review we discuss the role of perivascular adipose tissue (PVAT) in the modulation of vascular contractility and arterial pressure, focusing on the role of the renin-angiotensin-aldosterone system and oxidative stress/inflammation. Recent Findings: PVAT possesses an relevant endocrine-paracrine activity, which may be altered in several pathophysiological and clinical conditions. During the last two decades it has been shown PVAT may modulate vascular reactivity. It has also been previously demonstrated that inflammation in adipose tissue may be implicated in vascular dysfunction. In particular, adipocytes secrete a number of adipokines with various functions, as well as several vasoactive factors, together with components of the renin-angiotensin system which may act at local or at systemic level. It has been shown that the anticontractile effect of PVAT is lost in obesity, probably as a consequence of the development of adipocyte hypertrophy, inflammation, and oxidative stress. Summary: Adipose tissue dysfunction is interrelated with inflammation and oxidative stress, thus contributing to endothelial dysfunction observed in several pathological and clinical conditions such as obesity and hypertension. Decreased local adiponectin level, macrophage recruitment and infiltration, and activation of renin-angiotensin-aldosterone system could play an important role in this regards

    Enhanced text spacing improves reading performance in individuals with macular disease

    Get PDF
    The search by many investigators for a solution to the reading problems encountered by individuals with no central vision has been long and, to date, not very fruitful. Most textual manipulations, including font size, have led to only modest gains in reading speed. Previous work on spatial integrative properties of peripheral retina suggests that 'visual crowding' may be a major factor contributing to inefficient reading. Crowding refers to the fact that juxtaposed targets viewed eccentrically may be difficult to identify. The purpose of this study was to assess the combined effects of line spacing and word spacing on the ability of individuals with age-related macular degeneration (ARMD) to read short passages of text that were printed with either high (87.5%) or low contrast (17.5%) letters. Low contrast text was used to avoid potential ceiling effects and to mimic a possible reduction in letter contrast with light scatter from media opacities. For both low and high contrast text, the fastest reading speeds we measured were for passages of text with double line and double word spacing. In comparison with standard single spacing, double word/line spacing increased reading speed by approximately 26% with high contrast text (p < 0.001), and by 46% with low contrast text (p < 0.001). In addition, double line/word spacing more than halved the number of reading errors obtained with single spaced text. We compare our results with previous reading studies on ARMD patients, and conclude that crowding is detrimental to reading and that its effects can be reduced with enhanced text spacing. Spacing is particularly important when the contrast of the text is reduced, as may occur with intraocular light scatter or poor viewing conditions. We recommend that macular disease patients should employ double line spacing and double-character word spacing to maximize their reading efficiency. Β© 2013 Blackmore-Wright et al

    Fabrication Principles and Their Contribution to the Superior In Vivo Therapeutic Efficacy of Nano-Liposomes Remote Loaded with Glucocorticoids

    Get PDF
    We report here the design, development and performance of a novel formulation of liposome- encapsulated glucocorticoids (GCs). A highly efficient (>90%) and stable GC encapsulation was obtained based on a transmembrane calcium acetate gradient driving the active accumulation of an amphipathic weak acid GC pro-drug into the intraliposome aqueous compartment, where it forms a GC-calcium precipitate. We demonstrate fabrication principles that derive from the physicochemical properties of the GC and the liposomal lipids, which play a crucial role in GC release rate and kinetics. These principles allow fabrication of formulations that exhibit either a fast, second-order (t1/2 ∼1 h), or a slow, zero-order release rate (t1/2 ∼ 50 h) kinetics. A high therapeutic efficacy was found in murine models of experimental autoimmune encephalomyelitis (EAE) and hematological malignancies

    Galectin-3C Inhibits Tumor Growth and Increases the Anticancer Activity of Bortezomib in a Murine Model of Human Multiple Myeloma

    Get PDF
    Galectin-3 is a human lectin involved in many cellular processes including differentiation, apoptosis, angiogenesis, neoplastic transformation, and metastasis. We evaluated galectin-3C, an N-terminally truncated form of galectin-3 that is thought to act as a dominant negative inhibitor, as a potential treatment for multiple myeloma (MM). Galectin-3 was expressed at varying levels by all 9 human MM cell lines tested. In vitro galectin-3C exhibited modest anti-proliferative effects on MM cells and inhibited chemotaxis and invasion of U266 MM cells induced by stromal cell-derived factor (SDF)-1Ξ±. Galectin-3C facilitated the anticancer activity of bortezomib, a proteasome inhibitor approved by the FDA for MM treatment. Galectin-3C and bortezomib also synergistically inhibited MM-induced angiogenesis activity in vitro. Delivery of galectin-3C intravenously via an osmotic pump in a subcutaneous U266 cell NOD/SCID mouse model of MM significantly inhibited tumor growth. The average tumor volume of bortezomib-treated animals was 19.6% and of galectin-3C treated animals was 13.5% of the average volume of the untreated controls at day 35. The maximal effect was obtained with the combination of galectin-3C with bortezomib that afforded a reduction of 94% in the mean tumor volume compared to the untreated controls at day 35. In conclusion, this is the first study to show that inhibition of galectin-3 is efficacious in a murine model of human MM. Our results demonstrated that galectin-3C alone was efficacious in a xenograft mouse model of human MM, and that it enhanced the anti-tumor activity of bortezomib in vitro and in vivo. These data provide the rationale for continued testing of galectin-3C towards initiation of clinical trials for treatment of MM
    • …
    corecore