309 research outputs found

    Full-rotation singularity-safe workspace for kinematically redundant parallel robots

    Get PDF
    This paper introduces and computes a novel type of work-space for kinematically redundant parallel robots that defines the regionin which the end-effector can make full rotations without coming close tosingular configurations; it departs from the traditional full-rotation dex-terous workspace, which considers full rotations without encounteringsingularities but does not take into account the performance problemsresulting from closeness to these locations. Kinematically redundant ar-chitectures have the advantage of being able to be reconfigured withoutchanging the pose of the end-effector, thus being capable of avoidingsingularities and being suitable for applications where high dexterityis required. Knowing the workspace of these robots in which the end-effector is able to complete full, smooth rotations is a key design aspectto improve performance; however, since this singularity-safe workspaceis generally small, or even non-existent, in most parallel manipulators,its characterisation and calculation have not received attention in theliterature. The proposed workspace for kinematically redundant robotsis introduced using a planar parallel architecture as a case study; the for-mulation works by treating the manipulator as two halves, calculatingthe full-rotation workspace of the end-effector for each half whilst ensur-ing singularity conditions are not approached or met, and then findingthe intersection of both regions. The method is demonstrated ontwoexample robot instances, and a numerical analysis is also carried out asa comparison

    The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study

    Get PDF
    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses

    Computing cross-sections of the workspace of cable-driven parallel robots with 6 sagging cables

    Get PDF
    International audienceFinding the workspace of cable driven parallel robots (CDPR) with sagging cables (i.e. elastic and deformable cables) is a problem that has never been fully addressed in the literature as this is a complex issue: the inverse kinematics may have multiple solutions and the equations that describe the problem are non-linear and non algebraic. We address here the problem of determining an approximation of the border of horizontal cross-sections of the workspace for CDPR with 6 cables. We present an algorithm that give an outline of this border but also rises several theoretical issues. We then propose another algorithm that allow to determine a polygonal approximation of the workspace border induced by a specific constraint. All these algorithms are illustrated on a very large CDPR

    Involvement of TLR2 in Recognition of Acute Gammaherpesvirus-68 Infection

    Get PDF
    Toll-like receptors (TLRs) play a crucial role in the activation of innate immunity in response to many viruses. We previously reported the implication of TLR2 in the recognition of Epstein-Barr virus (EBV) by human monocytes. Because murine gammaherpesvirus-68 (MHV-68) is a useful model to study human gammaherpesvirus pathogenesis in vivo, we evaluated the importance of mouse TLR2 in the recognition of MHV-68.In studies using transfected HEK293 cells, MHV-68 lead to the activation of NF-κB reporter through TLR2. In addition, production of interleukin-6 (IL-6) and interferon-α (IFN-α) upon MHV-68 stimulation was reduced in murine embryonic fibroblasts (MEFs) derived from TLR2-/- and MyD88-/- mice as compared to their wild type (WT) counterpart. In transgenic mice expressing a luciferase reporter gene under the control of the mTLR2 promoter, MHV-68 challenge activated TLR2 transcription. Increased expression levels of TLR2 on blood granulocytes (CD115(-)Gr1(+)) and inflammatory monocytes (CD115(+)Gr1(+)), which mobilized to the lungs upon infection with MHV-68, was also confirmed by flow cytometry. Finally, TLR2 or MyD88 deficiency was associated with decreased IL-6 and type 1 IFN production as well as increased viral burden during short-term challenges with MHV-68.TLR2 contributes to the production of inflammatory cytokines and type 1 IFN as well as to the control of viral burden during infection with MHV-68. Taken together, our results suggest that the TLR2 pathway has a relevant role in the recognition of this virus and in the subsequent activation of the innate immune response

    Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage

    Get PDF
    We show that diurnally migrating Chaoborus sp. (phantom midge larvae), which can be highly abundant in eutrophic lakes with anoxic bottom, utilises sediment methane to inflate their tracheal sacs, which provides positive buoyancy to aid vertical migration. This process also effectively transports sediment methane bypassing oxidation to the upper water column, adding to the total methane outflux to the atmosphere

    Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa

    Get PDF
    BACKGROUND: The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na(+)-K(+)-ATPase. METHODS: Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na(+)-K(+)-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. RESULTS: The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α(1)Na(+)-K(+)-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. CONCLUSIONS: These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs
    • …
    corecore