609 research outputs found

    A New Instrument for the Detection of Fatigue Cracks under Airframe Rivets

    Get PDF
    During the past several years the electromagnetics laboratory at NASA Langley Research Center has focused on the Aging Aircraft Program. A major goal of this program has been the development of easy to use yet highly accurate inspection methods for the detection of flaws in airframe fuselage structures. A major breakthrough in this research came with the discovery of the Self-Nulling Probe Effect in November of 1992 [1]. It was clear that the unambiguous flaw signature of the probe could be developed into a low cost and easy to use fatigue crack detection device. Work toward this goal proceeded quickly, and a prototype hand held crack detector was introduced by mid 1993 [2]. As research into the precise flaw detection mechanism of the probe began to provide a deeper insight into the device [3–4], more sophisticated uses of the probe were conceived [5–6]. In particular, the Rotating Probe Method for the Detection of Fatigue Cracks under Airframe Rivets was beginning to be developed and tested by the end of 1993 [6], less than 1 year after the original discovery of the Self-Nulling Probe Effect

    A New ECT Probe with Rotating Direction Eddy Current

    Get PDF
    In the eddy current testing, various kinds of noise are generated by variations of many factors such as the probe lift-off and the material configuration. A lot of efforts have been made to develop new probes with little noise[1,2]. The authors think that it is necessary to develop a new noise free ECT probe in order to conduct the quantitative nondestructive testing.</p

    Characteristics of Frequency Domain Spectrum of Self-Nulling Eddy Current Probe Output

    Get PDF
    Since its introduction several years ago, the self-nulling eddy current probe [1–3] technology has been one of the focal points of the aging aircraft related R&D effort. Numerous application areas have broadened the scope of the probe which has also helped in better understanding the underlying principle. As the technology matures, however, deeper understanding on the various details related to the self nulling effect is needed to overcome difficulties associated with the current field tests and expand its application areas. A particular problem to be addressed is in differentiating the effect of small, shallow surface cracks from that of probe wobble during automated data acquisition operation

    On the Thermoelectric Effect of Interface Imperfections

    Get PDF
    Ordinary thermocouples use the well-known Seebeck effect to measure the temperature at the junction of two different conductors. The electromotive force generated by the heat depends on the difference between the respective thermoelectric powers of the contacting metals and the junction temperature. Figure 1 shows the schematic diagram of the thermoelectric measurement as most often used in nondestructive materials characterization. One of the reference electrodes is heated by electrical means to a preset temperature of 100 – 300 °C, pretty much like the tip of a temperature-stabilized soldering iron, and connected to the inverting (−) input of the differential amplifier driving the indicator. The other electrode is left cold at essentially room temperature and connected to the non-inverting (+) input. The measurement is done quickly in a few seconds to assure (i) that the hot reference electrode is not cooled down perceivably by the specimen and (ii) that the rest of the specimen beyond the close vicinity of the contact point is not warmed up perceivably. Ideally, regardless of the temperature difference between the junctions, only thermocouples made of different materials, i.e., materials of different thermoelectric power, will generate thermoelectric signal. This unique feature makes the simple thermoelectric tester one of the most sensitive material discriminators used in nondestructive inspection

    Emerging Non-Anomalous Baryonic Symmetries in the AdS_5/CFT_4 Correspondence

    Full text link
    We study the breaking of baryonic symmetries in the AdS_5/CFT_4 correspondence for D3 branes at Calabi-Yau three-fold singularities. This leads, for particular VEVs, to the emergence of non-anomalous baryonic symmetries during the renormalization group flow. We claim that these VEVs correspond to critical values of the B-field moduli in the dual supergravity backgrounds. We study in detail the C^3/Z_3 orbifold, the cone over F_0 and the C^3/Z_5 orbifold. For the first two examples, we study the dual supergravity backgrounds that correspond to the breaking of the emerging baryonic symmetries and identify the expected Goldstone bosons and global strings in the infra-red. In doing so we confirm the claim that the emerging symmetries are indeed non-anomalous baryonic symmetries.Comment: 65 pages, 15 figures;v2: minor changes, published versio

    Flux compactification on smooth, compact three-dimensional toric varieties

    Full text link
    Three-dimensional smooth, compact toric varieties (SCTV), when viewed as real six-dimensional manifolds, can admit G-structures rendering them suitable for internal manifolds in supersymmetric flux compactifications. We develop techniques which allow us to systematically construct G-structures on SCTV and read off their torsion classes. We illustrate our methods with explicit examples, one of which consists of an infinite class of toric CP^1 bundles. We give a self-contained review of the relevant concepts from toric geometry, in particular the subject of the classification of SCTV in dimensions less or equal to 3. Our results open up the possibility for a systematic construction and study of supersymmetric flux vacua based on SCTV.Comment: 27 pages, 10 figures; v2: references, minor typos & improvement

    Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter

    Get PDF
    We address the open question of performing an explicit stabilisation of all closed string moduli (including dilaton, complex structure and Kaehler moduli) in fluxed type IIB Calabi-Yau compactifications with chiral matter. Using toric geometry we construct Calabi-Yau manifolds with del Pezzo singularities. D-branes located at such singularities can support the Standard Model gauge group and matter content. In order to control complex structure moduli stabilisation we consider Calabi-Yau manifolds which exhibit a discrete symmetry that reduces the effective number of complex structure moduli. We calculate the corresponding periods in the symplectic basis of invariant three-cycles and find explicit flux vacua for concrete examples. We compute the values of the flux superpotential and the string coupling at these vacua. Starting from these explicit complex structure solutions, we obtain AdS and dS minima where the Kaehler moduli are stabilised by a mixture of D-terms, non-perturbative and perturbative alpha'-corrections as in the LARGE Volume Scenario. In the considered example the visible sector lives at a dP_6 singularity which can be higgsed to the phenomenologically interesting class of models at the dP_3 singularity.Comment: 49 pages, 5 figures; v2: references adde

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts

    Evidence for F(uzz) Theory

    Full text link
    We show that in the decoupling limit of an F-theory compactification, the internal directions of the seven-branes must wrap a non-commutative four-cycle S. We introduce a general method for obtaining fuzzy geometric spaces via toric geometry, and develop tools for engineering four-dimensional GUT models from this non-commutative setup. We obtain the chiral matter content and Yukawa couplings, and show that the theory has a finite Kaluza-Klein spectrum. The value of 1/alpha_(GUT) is predicted to be equal to the number of fuzzy points on the internal four-cycle S. This relation puts a non-trivial restriction on the space of gauge theories that can arise as a limit of F-theory. By viewing the seven-brane as tiled by D3-branes sitting at the N fuzzy points of the geometry, we argue that this theory admits a holographic dual description in the large N limit. We also entertain the possibility of constructing string models with large fuzzy extra dimensions, but with a high scale for quantum gravity.Comment: v2: 66 pages, 3 figures, references and clarifications adde

    BranchClust: a phylogenetic algorithm for selecting gene families

    Get PDF
    BACKGROUND: Automated methods for assembling families of orthologous genes include those based on sequence similarity scores and those based on phylogenetic approaches. The first are easy to automate but usually they do not distinguish between paralogs and orthologs or have restriction on the number of taxa. Phylogenetic methods often are based on reconciliation of a gene tree with a known rooted species tree; a limitation of this approach, especially in case of prokaryotes, is that the species tree is often unknown, and that from the analyses of single gene families the branching order between related organisms frequently is unresolved. RESULTS: Here we describe an algorithm for the automated selection of orthologous genes that recognizes orthologous genes from different species in a phylogenetic tree for any number of taxa. The algorithm is capable of distinguishing complete (containing all taxa) and incomplete (not containing all taxa) families and recognizes in- and outparalogs. The BranchClust algorithm is implemented in Perl with the use of the BioPerl module for parsing trees and is freely available at . CONCLUSION: BranchClust outperforms the Reciprocal Best Blast hit method in selecting more sets of putatively orthologous genes. In the test cases examined, the correctness of the selected families and of the identified in- and outparalogs was confirmed by inspection of the pertinent phylogenetic trees
    • 

    corecore