28 research outputs found

    Characterization of RNase MRP RNA and novel snoRNAs from Giardia intestinalis and Trichomonas vaginalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic cells possess a complex network of RNA machineries which function in RNA-processing and cellular regulation which includes transcription, translation, silencing, editing and epigenetic control. Studies of model organisms have shown that many ncRNAs of the RNA-infrastructure are highly conserved, but little is known from non-model protists. In this study we have conducted a genome-scale survey of medium-length ncRNAs from the protozoan parasites <it>Giardia intestinalis </it>and <it>Trichomonas vaginalis</it>.</p> <p>Results</p> <p>We have identified the previously 'missing' <it>Giardia </it>RNase MRP RNA, which is a key ribozyme involved in pre-rRNA processing. We have also uncovered 18 new H/ACA box snoRNAs, expanding our knowledge of the H/ACA family of snoRNAs.</p> <p>Conclusions</p> <p>Results indicate that <it>Giardia intestinalis </it>and <it>Trichomonas vaginalis</it>, like their distant multicellular relatives, contain a rich infrastructure of RNA-based processing. From here we can investigate the evolution of RNA processing networks in eukaryotes.</p

    Complex I-Associated Hydrogen Peroxide Production Is Decreased and Electron Transport Chain Enzyme Activities Are Altered in n-3 Enriched fat-1 Mice

    Get PDF
    The polyunsaturated nature of n-3 fatty acids makes them prone to oxidative damage. However, it is not clear if n-3 fatty acids are simply a passive site for oxidative attack or if they also modulate mitochondrial reactive oxygen species (ROS) production. The present study used fat-1 transgenic mice, that are capable of synthesizing n-3 fatty acids, to investigate the influence of increases in n-3 fatty acids and resultant decreases in the n-6∶n-3 ratio on liver mitochondrial H2O2 production and electron transport chain (ETC) activity. There was an increase in n-3 fatty acids and a decrease in the n-6∶n-3 ratio in liver mitochondria from the fat-1 compared to control mice. This change was largely due to alterations in the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine, with only a small percentage of fatty acids in cardiolipin being altered in the fat-1 animals. The lipid changes in the fat-1 mice were associated with a decrease (p<0.05) in the activity of ETC complex I and increases (p<0.05) in the activities of complexes III and IV. Mitochondrial H2O2 production with either succinate or succinate/glutamate/malate substrates was also decreased (p<0.05) in the fat-1 mice. This change in H2O2 production was due to a decrease in ROS production from ETC complex I in the fat-1 animals. These results indicate that the fatty acid changes in fat-1 liver mitochondria may at least partially oppose oxidative stress by limiting ROS production from ETC complex I

    Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon

    Get PDF
    Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na+, K+-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na+, K+-ATPase content. Kidneys were analyzed for Na+, K+-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na+, K+-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na+, K+-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na+, K+-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO3− and 2CO32−) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size
    corecore