483 research outputs found

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure

    Clinical features of culture-proven Mycoplasma pneumoniae infections at King Abdulaziz University Hospital, Jeddah, Saudi Arabia

    Get PDF
    OBJECTIVE: This retrospective chart review describes the epidemiology and clinical features of 40 patients with culture-proven Mycoplasma pneumoniae infections at King Abdulaziz University Hospital, Jeddah, Saudi Arabia. METHODS: Patients with positive M. pneumoniae cultures from respiratory specimens from January 1997 through December 1998 were identified through the Microbiology records. Charts of patients were reviewed. RESULTS: 40 patients were identified, 33 (82.5%) of whom required admission. Most infections (92.5%) were community-acquired. The infection affected all age groups but was most common in infants (32.5%) and pre-school children (22.5%). It occurred year-round but was most common in the fall (35%) and spring (30%). More than three-quarters of patients (77.5%) had comorbidities. Twenty-four isolates (60%) were associated with pneumonia, 14 (35%) with upper respiratory tract infections, and 2 (5%) with bronchiolitis. Cough (82.5%), fever (75%), and malaise (58.8%) were the most common symptoms, and crepitations (60%), and wheezes (40%) were the most common signs. Most patients with pneumonia had crepitations (79.2%) but only 25% had bronchial breathing. Immunocompromised patients were more likely than non-immunocompromised patients to present with pneumonia (8/9 versus 16/31, P = 0.05). Of the 24 patients with pneumonia, 14 (58.3%) had uneventful recovery, 4 (16.7%) recovered following some complications, 3 (12.5%) died because of M pneumoniae infection, and 3 (12.5%) died due to underlying comorbidities. The 3 patients who died of M pneumoniae pneumonia had other comorbidities. CONCLUSION: our results were similar to published data except for the finding that infections were more common in infants and preschool children and that the mortality rate of pneumonia in patients with comorbidities was high

    Latency Associated Peptide Has In Vitro and In Vivo Immune Effects Independent of TGF-β1

    Get PDF
    Latency Associated Peptide (LAP) binds TGF-β1, forming a latent complex. Currently, LAP is presumed to function only as a sequestering agent for active TGF-β1. Previous work shows that LAP can induce epithelial cell migration, but effects on leukocytes have not been reported. Because of the multiplicity of immunologic processes in which TGF-β1 plays a role, we hypothesized that LAP could function independently to modulate immune responses. In separate experiments we found that LAP promoted chemotaxis of human monocytes and blocked inflammation in vivo in a murine model of the delayed-type hypersensitivity response (DTHR). These effects did not involve TGF-β1 activity. Further studies revealed that disruption of specific LAP-thrombospondin-1 (TSP-1) interactions prevented LAP-induced responses. The effect of LAP on DTH inhibition depended on IL-10. These data support a novel role for LAP in regulating monocyte trafficking and immune modulation

    The Transcriptional Response of Drosophila melanogaster to Infection with the Sigma Virus (Rhabdoviridae)

    Get PDF
    Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus

    Molecular identification of adenovirus causing respiratory tract infection in pediatric patients at the University of Malaya Medical Center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are at least 51 adenovirus serotypes (AdV) known to cause human infections. The prevalence of the different human AdV (HAdV) serotypes varies among different regions. Presently, there are no reports of the prevalent HAdV types found in Malaysia. The present study was undertaken to identify the HAdV types associated primarily with respiratory tract infections (RTI) of young children in Malaysia.</p> <p>Methods</p> <p>Archived HAdV isolates from pediatric patients with RTI seen at the University of Malaya Medical Center (UMMC), Kuala Lumpur, Malaysia from 1999 to 2005 were used. Virus isolates were inoculated into cell culture and DNA was extracted when cells showed significant cytopathic effects. AdV partial hexon gene was amplified and the sequences together with other known HAdV hexon gene sequences were used to build phylogenetic trees. Identification of HAdV types found among young children in Malaysia was inferred from the phylograms.</p> <p>Results</p> <p>At least 2,583 pediatric patients with RTI sought consultation and treatment at the UMMC from 1999 to 2005. Among these patients, 48 (< 2%) were positive for HAdV infections. Twenty-seven isolates were recovered and used for the present study. Nineteen of the 27 (~70%) isolates belonged to HAdV species C (HAdV-C) and six (~22%) were of HAdV species B (HAdV-B). Among the HAdV-C species, 14 (~74%) of them were identified as HAdV type 1 (HAdV-1) and HAdV type 2 (HAdV-2), and among the HAdV-B species, HAdV type 3 (HAdV-3) was the most common serotype identified. HAdV-C species also was isolated from throat and rectal swabs of children with hand, foot, and mouth disease (HFMD). Two isolates were identified as corresponding to HAdV-F species from a child with HFMD and a patient with intestinal obstruction.</p> <p>Conclusions</p> <p>HAdV-1 and HAdV-2 were the most common HAdV isolated from pediatric patients who sought treatment for RTI at the UMMC from 1999 to 2005. HAdV-B, mainly HAdV-3, was recovered from ~22% of the patients. These findings provide a benchmark for future studies on the prevalence and epidemiology of HAdV types in Malaysia and in the region.</p

    Effects of Anti-VEGF on Predicted Antibody Biodistribution: Roles of Vascular Volume, Interstitial Volume, and Blood Flow

    Get PDF
    BACKGROUND: The identification of clinically meaningful and predictive models of disposition kinetics for cancer therapeutics is an ongoing pursuit in drug development. In particular, the growing interest in preclinical evaluation of anti-angiogenic agents alone or in combination with other drugs requires a complete understanding of the associated physiological consequences. METHODOLOGY/PRINCIPAL FINDINGS: Technescan™ PYP™, a clinically utilized radiopharmaceutical, was used to measure tissue vascular volumes in beige nude mice that were naïve or administered a single intravenous bolus dose of a murine anti-vascular endothelial growth factor (anti-VEGF) antibody (10 mg/kg) 24 h prior to assay. Anti-VEGF had no significant effect (p>0.05) on the fractional vascular volumes of any tissues studied; these findings were further supported by single photon emission computed tomographic imaging. In addition, apart from a borderline significant increase (p = 0.048) in mean hepatic blood flow, no significant anti-VEGF-induced differences were observed (p>0.05) in two additional physiological parameters, interstitial fluid volume and the organ blood flow rate, measured using indium-111-pentetate and rubidium-86 chloride, respectively. Areas under the concentration-time curves generated by a physiologically-based pharmacokinetic model changed substantially (>25%) in several tissues when model parameters describing compartmental volumes and blood flow rates were switched from literature to our experimentally derived values. However, negligible changes in predicted tissue exposure were observed when comparing simulations based on parameters measured in naïve versus anti-VEGF-administered mice. CONCLUSIONS/SIGNIFICANCE: These observations may foster an enhanced understanding of anti-VEGF effects in murine tissues and, in particular, may be useful in modeling antibody uptake alone or in combination with anti-VEGF

    Genome-Wide Analysis of Nucleotide-Level Variation in Commonly Used Saccharomyces cerevisiae Strains

    Get PDF
    Ten years have passed since the genome of Saccharomyces cerevisiae–more precisely, the S288c strain–was completely sequenced. However, experimental work in yeast is commonly performed using strains that are of unknown genetic relationship to S288c. Here, we characterized the nucleotide-level similarity between S288c and seven commonly used lab strains (A364A, W303, FL100, CEN.PK, ∑1278b, SK1 and BY4716) using 25mer oligonucleotide microarrays that provide complete and redundant coverage of the ∼12 Mb Saccharomyces cerevisiae genome. Using these data, we assessed the frequency and distribution of nucleotide variation in comparison to the sequenced reference genome. These data allow us to infer the relationships between experimentally important strains of yeast and provide insight for experimental designs that are sensitive to sequence variation. We propose a rational approach for near complete sequencing of strains related to the reference using these data and directed re-sequencing. These data and new visualization tools are accessible online in a new resource: the Yeast SNPs Browser (YSB; http://gbrowse.princeton.edu/cgi-bin/gbrowse/yeast_strains_snps) that is available to all researchers

    Natural radionuclide of Po210 in the edible seafood affected by coal-fired power plant industry in Kapar coastal area of Malaysia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Po<sup>210 </sup>can be accumulated in various environmental materials, including marine organisms, and contributes to the dose of natural radiation in seafood. The concentration of this radionuclide in the marine environment can be influenced by the operation of a coal burning power plant but existing studies regarding this issue are not well documented. Therefore, the aim of this study was to estimate the Po<sup>210 </sup>concentration level in marine organisms from the coastal area of Kapar, Malaysia which is very near to a coal burning power plant station and to assess its impact on seafood consumers.</p> <p>Methods</p> <p>Concentration of Po<sup>210 </sup>was determined in the edible muscle of seafood and water from the coastal area of Kapar, Malaysia using radiochemical separation and the Alpha Spectrometry technique.</p> <p>Results</p> <p>The activities of Po<sup>210 </sup>in the dissolved phase of water samples ranged between 0.51 ± 0.21 and 0.71 ± 0.24 mBql<sup>-1 </sup>whereas the particulate phase registered a range of 50.34 ± 11.40 to 72.07 ± 21.20 Bqkg<sup>-1</sup>. The ranges of Po<sup>210 </sup>activities in the organism samples were 4.4 ± 0.12 to 6.4 ± 0.95 Bqkg<sup>-1 </sup>dry wt in fish (<it>Arius maculatus</it>), 45.7 ± 0.86 to 54.4 ± 1.58 Bqkg<sup>-1 </sup>dry wt in shrimp (<it>Penaeus merguiensis</it>) and 104.3 ± 3.44 to 293.8 ± 10.04 Bqkg<sup>-1 </sup>dry wt in cockle (<it>Anadara granosa</it>). The variation of Po<sup>210 </sup>in organisms is dependent on the mode of their life style, ambient water concentration and seasonal changes. The concentration factors calculated for fish and molluscs were higher than the recommended values by the IAEA. An assessment of daily intake and received dose due to the consumption of seafood was also carried out and found to be 2083.85 mBqday<sup>-1</sup>person<sup>-1 </sup>and 249.30 μSvyr<sup>-1 </sup>respectively. These values are comparatively higher than reported values in other countries. Moreover, the transformation of Po<sup>210 </sup>in the human body was calculated and revealed that a considerable amount of Po<sup>210 </sup>can be absorbed in the internal organs. The calculated values of life time mortality and morbidity cancer risks were 24.8 × 10<sup>-4 </sup>and 34 × 10<sup>-4 </sup>respectively which also exceeded the recommended limits set by the ICRP.</p> <p>Conclusions</p> <p>The findings of this present study can be used to evaluate the safety dose uptake level of seafood as well as to monitor environmental health. However, as the calculated dose and cancer risks were found to cross the limit of safety, finding a realistic way to moderate the risk is imperative.</p

    Monte Carlo Investigation of Diffusion of Receptors and Ligands that Bind Across Opposing Surfaces

    Get PDF
    Studies of receptor diffusion on a cell surface show a variety of behaviors, such as diffusive, sub-diffusive, or super-diffusive motion. However, most studies to date focus on receptor molecules diffusing on a single cell surface. We have previously studied receptor diffusion to probe the molecular mechanism of receptor clustering at the cell–cell junction between two opposing cell surfaces. Here, we characterize the diffusion of receptors and ligands that bind to each other across two opposing cell surfaces, as in cell–cell and cell–bilayer interactions. We use a Monte Carlo method, where receptors and ligands are simulated as independent agents that bind and diffuse probabilistically. We vary receptor–ligand binding affinity and plot the molecule-averaged mean square displacement (MSD) of ligand molecules as a function of time. Our results show that MSD plots are qualitatively different for flat and curved interfaces, as well as between the cases of presence and absence of directed transport of receptor–ligand complexes toward a specific location on the interface. Receptor–ligand binding across two opposing surfaces leads to transient sub-diffusive motion at early times provided the interface is flat. This effect is entirely absent if the interface is curved, however, in this instance we observe sub-diffusive motion. In addition, a decrease in the equilibrium value of the MSD occurs as affinity increases, something which is absent for a flat interface. In the presence of directed transport of receptor–ligand complexes, we observe super-diffusive motion at early times for a flat interface. Super-diffusive motion is absent for a curved interface, however, in this case we observe a transient decrease in MSD with time prior to equilibration for high-affinity values
    corecore