1,076 research outputs found

    Emergency Action Planning in Kansas High Schools

    Get PDF
    Introduction. Current evidence shows a variable rate of emergency action plan (EAP) implementation and a low rate of compliance to EAP guidelines in United States secondary schools. Compliance to emergency action plan recommendations in Kansas high schools is not known. The purpose of this study was to identify the emergency preparedness of public high school athletics in the state of Kansas and identify prevailing characteristics of schools that correlate with decreased compliance of an EAP. Methods. Athletic directors for public high schools in the state of Kansas were asked to participate in a web-based questionnaire that was emailed to each athletic director. The questionnaire identified demographics of the study population, EAP implementation rates, compliance to national EAP guidelines, access to certified medical personnel, and training received by athletics personnel. Descriptive statistics were then compiled and reported. Results. The response rate for the survey was 96% (341/355). A total of 94.1% (320/340) of schools have an EAP, 81.4% (276/339) of schools have an automated external defibrillator (AED) at all athletic venues, and 51.8% (176/340) of schools had an athletic trainer (AT) on staff. Urban schools were significantly more likely than rural schools to have an AT on staff (OR=11.10, 95% CI=[6.42, 19.18], p<0.0001), have an EAP (OR=3.69, 95% CI=[1.05, 13.02], p=0.0303), require additional training for coaches (OR=2.69, 95% CI=[1.42, 5.08], p =0.0017), and have an AED on-site for some events (OR=2.18, 95% CI=[1.24, 3.81], p=0.0057). Conclusions. Most Kansas high schools have an EAP in place and have at least 1 AED. Emergency planning should be improved through venue specific EAPs, access to early defibrillation, and additional training. Rural and low division schools have lower AT staffing and consequently are more significantly impacted by these factors. Rural and low division schools are more significantly impacted than urban and high division schools and this should be taken into account in future improvement strategies

    Baryons in the warm-hot intergalactic medium

    Get PDF
    Approximately 30%-40% of all baryons in the present-day universe reside in a warm-hot intergalactic medium (WHIM), with temperatures in the range 105 \u3c T \u3c 107 K. This is a generic prediction from six hydrodynamic simulations of currently favored structure formation models having a wide variety of numerical methods, input physics, volumes, and spatial resolutions. Most of these warm-hot baryons reside in diffuse large-scale structures with a median overdensity around 10-30, not in virialized objects such as galaxy groups or galactic halos. The evolution of the WHIM is primarily driven by shock heating from gravitational perturbations breaking on mildly nonlinear, nonequilibrium structures such as filaments. Supernova feedback energy and radiative cooling play lesser roles in its evolution. WHIM gas may be consistent with observations of the 0.25 keV X-ray background without being significantly heated by nongravitational processes because the emitting gas is very diffuse. Our results confirm and extend previous work by Cen & Ostriker and Davé et al

    Telomerase activity in melanoma and non-melanoma skin cancer

    Get PDF
    Telomeres are specialized structures consisting of repeat arrays of TTAGGGn located at the ends of chromosomes. They are essential for chromosome stability and, in the majority of normal somatic cells, telomeres shorten with each cell division. Most immortalized cell lines and tumours reactivate telomerase to stabilize the shortening chromosomes. Telomerase activation is regarded as a central step in carcinogenesis and, here, we demonstrate telomerase activation in premalignant skin lesions and also in all forms of skin cancer. Telomerase activation in normal skin was a rare event, and among 16 samples of normal skin (one with a history of chronic sun exposure) 12.5% (2 out of 16) exhibited telomerase activity. One out of 16 (6.25%) benign proliferative lesions, including viral and seborrhoeic wart samples, had telomerase activity. In premalignant actinic keratoses and Bowen's disease, 42% (11 out of 26) of samples exhibited telomerase activity. In the basal cell carcinoma and cutaneous malignant melanoma (CMM) lesions, telomerase was activated in 77% (10 out of 13) and 69% (22 out of 32) respectively. However, only 25% (3 out of 12) of squamous cell carcinomas (SCC) had telomerase activity. With the exception of one SCC sample, telomerase activity in a positive control cell line derived from a fibrosarcoma (HT1080) was not inhibited when mixed with the telomerase-negative SCC or CMM extracts, indicating that, overall, Taq polymerase and telomerase inhibitors were not responsible for the negative results. Mean telomere hybridizing restriction fragment (TRF) analysis was performed in a number of telomerase-positive and -negative samples and, although a broad range of TRF sizes ranging from 3.6 to 17 kb was observed, a relationship between telomerase status and TRF size was not found

    The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat

    Full text link
    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig

    Positive words carry less information than negative words

    Get PDF
    We show that the frequency of word use is not only determined by the word length \cite{Zipf1935} and the average information content \cite{Piantadosi2011}, but also by its emotional content. We have analyzed three established lexica of affective word usage in English, German, and Spanish, to verify that these lexica have a neutral, unbiased, emotional content. Taking into account the frequency of word usage, we find that words with a positive emotional content are more frequently used. This lends support to Pollyanna hypothesis \cite{Boucher1969} that there should be a positive bias in human expression. We also find that negative words contain more information than positive words, as the informativeness of a word increases uniformly with its valence decrease. Our findings support earlier conjectures about (i) the relation between word frequency and information content, and (ii) the impact of positive emotions on communication and social links.Comment: 16 pages, 3 figures, 3 table

    Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells

    Get PDF
    Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length

    The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae

    Get PDF
    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria

    Long-Branch Attraction Bias and Inconsistency in Bayesian Phylogenetics

    Get PDF
    Bayesian inference (BI) of phylogenetic relationships uses the same probabilistic models of evolution as its precursor maximum likelihood (ML), so BI has generally been assumed to share ML's desirable statistical properties, such as largely unbiased inference of topology given an accurate model and increasingly reliable inferences as the amount of data increases. Here we show that BI, unlike ML, is biased in favor of topologies that group long branches together, even when the true model and prior distributions of evolutionary parameters over a group of phylogenies are known. Using experimental simulation studies and numerical and mathematical analyses, we show that this bias becomes more severe as more data are analyzed, causing BI to infer an incorrect tree as the maximum a posteriori phylogeny with asymptotically high support as sequence length approaches infinity. BI's long branch attraction bias is relatively weak when the true model is simple but becomes pronounced when sequence sites evolve heterogeneously, even when this complexity is incorporated in the model. This bias—which is apparent under both controlled simulation conditions and in analyses of empirical sequence data—also makes BI less efficient and less robust to the use of an incorrect evolutionary model than ML. Surprisingly, BI's bias is caused by one of the method's stated advantages—that it incorporates uncertainty about branch lengths by integrating over a distribution of possible values instead of estimating them from the data, as ML does. Our findings suggest that trees inferred using BI should be interpreted with caution and that ML may be a more reliable framework for modern phylogenetic analysis

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed
    • …
    corecore