116 research outputs found

    Feto-Placental Atherosclerotic Lesions in Intrauterine Fetal Demise: Role of Parental Cigarette Smoking

    Get PDF
    The atherogenic effect of cigarette smoking is already recognizable in coronary arteries of fetuses in the last gestational weeks. In this study we analyzed the atherogenic effect of mother’s and father’s smoking habit on coronary arteries and even on adnexa of 30 human fresh fetuses died from 32 to 41 gestational weeks. In 12 cases only the mothers of the victims were cigarette smokers, in 7 cases only the fathers were smokers, whereas in 11 cases nobody smoked

    A survey of failed post-retained restorations

    Get PDF
    Survival of endodontically treated, post-restored teeth depends on a multitude of factors, all of which are practically impossible to include in a randomized, controlled clinical study. The purpose of this survey was to characterize and analyze reported failures of post-retained restorations to identify factors critical to failure and to type of failure. A questionnaire was mailed to private practitioners in Denmark with a request to complete the questionnaire whenever a patient presented with a failed post-retained restoration. Information was gathered on factors related to the patient, the tooth, the restorative materials, and the techniques. Two-hundred and sixty questionnaires were collected from 171 practitioners over a 3-year period. Functioning time until failure varied between 3 months and 38 years. Mean survival time until failure was 11 years. Of the failed restorations, 61% had functioned for 10 years or less. Fracture of the tooth was the most common type of failure reported, followed by loosening of the post and fracture of the post. Tapered posts implied an increased risk of tooth fracture compared to loosening or fracture of the post, and the relative risk of tooth fracture increased with the functioning time until failure. Fracture of the post was more common among male than female patients. On the basis of this survey of failed post-retained restorations, it was concluded that tapered posts were associated with a higher risk of tooth fracture than were parallel-sided posts

    Investigation on synthesis and properties of isosorbide based bis-GMA analogue

    Get PDF
    The aim of this work was to synthesize and investigate properties of a novel dimethacrylic monomer based on bioderived alicyclic diol—isosorbide. Its potential as a possible substitute of 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane (BISGMA), widely used in dental restorative materials and suspected for toxicity was assessed. The novel monomer was obtained in a three-step synthesis. First, isosorbide was etherified by a Williamson nucleophilic substitution and subsequently oxidized to isosorbide diglycidyl ether (ISDGE). A triphenyl phosphine catalyzed addition of methacrylic acid to ISDGE resulted in 2,5-bis(2-hydroxy-3-methacryloyloxypropoxy)- 1,4:3,6-dianhydro-sorbitol (ISDGMA). The monomer obtained was photopolymerized using camphorquinone/2-(dimethylamino)ethyl methacrylate initiating system. Next, compositions with triethylene glycol dimethacrylate (TEGDMA) were prepared and polymerized. Double bond conversion, polymerization shrinkage and water sorption of resulting polymers were determined. Selected mechanical (flexular strength and modulus, Brinell hardness) and thermomechanical (DMA analysis) properties were also investigated. BISGMA based materials were prepared as reference for comparison of particular properties

    Engaging fathers: : acknowledging the barriers

    Get PDF
    Engaging fathers has the potential to benefit the entire family through 1. promoting fathers’ wellbeing directly, 2. building on fathers’ vital capacity to support mothers’ psychological wellbeing, 3. maternal health behaviours, and 4. promoting children’s mental health and development. Benefits to a child’s development include positive impacts on cognitive development, educational attainment, social competence, positive self-esteem and reduced incidence of emotional and behavioural problems. However, the barriers to father-inclusive practice are real and numerous and include personal, organisational, strategic and societal factors. This article reviews the need to work more closely and fruitfully with fathers, and acknowledges some of the barriers

    Phylogenetic Analysis of Seven WRKY Genes across the Palm Subtribe Attaleinae (Arecaceae) Identifies Syagrus as Sister Group of the Coconut

    Get PDF
    BACKGROUND:The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the "abominable mysteries" of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. METHODOLOGY/PRINCIPAL FINDINGS:We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. CONCLUSIONS/SIGNIFICANCE:This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for clades resolved in the Attaleinae suggests that WRKY loci are informative markers for investigating the phylogenetic relationships of the palm family

    Scientific foundations for an IUCN red list of ecosystems

    Get PDF
    An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity

    Technetium Stabilization in Low-Solubility Sulfide Phases: A Review

    No full text
    Technetium contamination remains a major environmental problem at nuclear reprocessing sites, e.g., the Hanford Site, Washington, USA. At these sites, Tc is present in liquid waste destined for immobilization in a waste form or has been released into the subsurface environment. The high environmental risk associated with Tc is due to its long half-life (214 000 years) and the mobility of the oxidized anionic species Tc(VII)O4-. Under reducing conditions, TcO4- is readily reduced to Tc(IV), which commonly exists as a relatively insoluble and therefore immobile, hydrous Tc-oxide (TcO2·nH2O). The stability of Tc(IV) sequestered as solid phases depends on the solubility of the solid and susceptibility to reoxidation to TcO4-, which in turn depend on the (biogeo)chemical conditions of the environment and/or nuclear waste streams. Unfortunately, the solubility of crystalline TcO2 or amorphous TcO2·H2O is still above the maximum contaminant level (MCL) established by the U.S. EPA (900 pCi/L), and the kinetics of TcO2 oxidative dissolution can be on the order of days to years. In addition to oxygen, sulfur can form complexes that significantly affect the adsorption, solubility, and reoxidation potential of Tc, especially Tc(IV). The principal technetium sulfides are TcS2 and Tc2S7, but much less is known about the mechanisms of formation, stabilization, and reoxidation of Tc-sulfides. A common assumption is that sulfides are less soluble than their oxyhydrous counterparts. Determination of the molecular structure of Tc2S7 in particular has been hampered by the propensity of this phase to precipitate as an amorphous substance. Recent work indicates that the oxidation state of Tc in Tc2S7 is Tc(IV), in apparent contradiction to its nominal stoichiometry. Technetium is relatively immobile in reduced sediments and soils, but in many cases the exact sink for Tc has not been identified. Experiments and modeling have demonstrated that both abiotic and biologic mechanisms can exert strong controls on Tc mobility and that Tc binding or uptake into sulfide phases can occur. These and similar investigations also show that extended exposure to oxidizing conditions results in transformation of sulfide-stabilized Tc(IV) to a Tc(IV)O2-like phase without formation of measurable dissolved TcO4-, suggesting a solid-state transformation in which Tc(IV)-associated sulfide is preferentially oxidized before the Tc(IV) cation. This transformation of Tc(IV)-sulfides to Tc(IV)-oxides may be the main process that limits remobilization of Tc as Tc(VII)O4-. The efficacy of the final waste form to retain Tc also strongly depends on the ability of oxidizing species to enter the waste and convert Tc(IV) to Tc(VII). Many waste form designs are reducing (e.g., cementitious waste forms such as salt stone) and, therefore, attempt to restrict access of oxidizing species such that diffusion is the rate-limiting step in remobilization of Tc
    corecore