57 research outputs found
Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′N : ODP Hole 1274A
Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 153 (2007): 303-319, doi:10.1007/s00410-006-0148-6.ODP Leg 209 Site 1274 mantle peridotites are highly refractory in terms of lack of residual
clinopyroxene, olivine Mg# (up to 0.92) and spinel Cr# (~0.5), suggesting high degree of partial
melting (>20%). Detailed studies of their microstructures show that they have extensively
reacted with a pervading intergranular melt prior to cooling in the lithosphere, leading to
crystallization of olivine, clinopyroxene and spinel at the expense of orthopyroxene. The least
reacted harzburgites are too rich in orthopyroxene to be simple residues of low-pressure (spinel
field) partial melting. Cu-rich sulfides that precipitated with the clinopyroxenes indicate that
the intergranular melt was generated by no more than 12% melting of a MORB mantle or by
more extensive melting of a clinopyroxene-rich lithology. Rare olivine-rich lherzolitic domains,
characterized by relics of coarse clinopyroxenes intergrown with magmatic sulfides, support
the second interpretation. Further, coarse and intergranular clinopyroxenes are highly depleted
in REE, Zr and Ti. A two-stage partial melting/melt-rock reaction history is proposed, in which
initial mantle underwent depletion and refertilization after an earlier high pressure (garnet field)
melting event before upwelling and remelting beneath the present-day ridge. The ultra-depleted
compositions were acquired through melt re-equilibration with residual harzburgites.Funding for this
research was provided by Centre National de la Recherche Scientifique-Institut National des
Sciences de l’Univers (Programme Dynamique et Evolution de la Terre Interne)
Lower crustal crystallization and melt evolution at mid-ocean ridges
Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 5 (2012): 651–655, doi:10.1038/ngeo1552.Mid-ocean ridge magma is produced when Earth’s mantle rises beneath the ridge axis and melts as a result of the decrease in pressure. This magma subsequently undergoes cooling and crystallization to form the oceanic crust. However, there is no consensus on where within the crust or upper mantle crystallization occurs1-5. Here we provide direct geochemical evidence for the depths of crystallization beneath ridge axes of two spreading centres located in the Pacific Ocean: the fast-spreading-rate East Pacific Rise and intermediate-spreading-rate Juan de Fuca Ridge. Specifically, we measure volatile concentrations in olivine-hosted melt inclusions to derive vapour-saturation pressures and to calculate crystallisation depth. We also analyse the melt inclusions for major and trace element concentrations, allowing us to compare the distributions of crystallisation and to track the evolution of the melt during ascent through the oceanic crust. We find that most crystallisation occurs within a seismically-imaged melt lens located in the shallow crust at both ridges, but over 25% of the melt inclusions have crystallisation pressures consistent with formation in the lower oceanic crust. Furthermore, our results suggest that melts formed beneath the ridge axis can be efficiently mixed and undergo olivine crystallisation in the mantle, prior to ascent into the ocean crust.This research was supported by the National Science
Foundation (EAR-0646694) and the WHOI Deep Ocean Exploration Institute/Ocean
Ridge Initiative.2013-02-1
Quantifying garnet-melt trace element partitioning using lattice-strain theory: New crystal-chemical and thermodynamic constraints
Many geochemical models of major igneous differentiation events on the Earth, the Moon, and Mars invoke the presence of garnet or its high-pressure majoritic equivalent as a residual phase, based on its ability to fractionate critical trace element pairs (Lu/Hf, U/Th, heavy REE/light REE). As a result, quantitative descriptions of mid-ocean ridge and hot spot magmatism, and lunar, martian, and terrestrial magma oceans require knowledge of garnet-melt partition coefficients over a wide range of conditions. In this contribution, we present new crystal-chemical and thermodynamic constraints on the partitioning of rare earth elements (REE), Y and Sc between garnet and anhydrous silicate melt as a function of pressure (P), temperature (T), and composition (X). Our approach is based on the interpretation of experimentally determined values of partition coefficients D using lattice-strain theory. In this and a companion paper (Draper and van Westrenen this issue) we derive new predictive equations for the ideal ionic radius of the dodecahedral garnet X-site,
Primitive layered gabbros from fast-spreading lower oceanic crust
Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks-in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas-provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt
- …