13 research outputs found

    The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR): it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known.</p> <p>Results</p> <p>Here, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus <it>Trichoderma reesei </it>(anamorph of <it>Hypocrea jecorina</it>) by profiling transcription in a wild-type and a delta-<it>cre1 </it>mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes.</p> <p>Conclusions</p> <p>Our study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment.</p

    What is important in transdisciplinary pain neuroscience education? : A qualitative study

    No full text
    Purpose: The main focus of Pain Neuroscience Education is around changing patients’ pain perceptions and minimizing further medical care. Even though Pain Neuroscience Education has been studied extensively, the experiences of patients regarding the Pain Neuroscience Education process remain to be explored. Therefore, the aim of this study was to explore the experiences in patients with non-specific chronic pain. Materials and methods: Fifteen patients with non-specific chronic pain from a transdisciplinary treatment centre were in-depth interviewed. Data collection and analysis were performed according to Grounded Theory. Results: Five interacting topics emerged: (1) “the pre-Pain Neuroscience Education phase”, involving the primary needs to provide Pain Neuroscience Education, with subthemes containing (a) “a broad intake” and (b) “the healthcare professionals”; (2) “a comprehensible Pain Neuroscience Education” containing (a) “understandable explanation” and (b) “interaction between the physiotherapist and psychologist”; (3) “outcomes of Pain Neuroscience Education” including (a) “awareness”, b) “finding peace of mind”, and (c) “fewer symptoms”; 4) “"scepticism” containing (a) “doubt towards the diagnosis and Pain Neuroscience Education”, (b) “disagreement with the diagnosis and Pain Neuroscience Education”, and (c) “Pain Neuroscience Education can be confronting”. Conclusion: This is the first study providing insight into the constructs contributing to the Pain Neuroscience Education experience of patients with non-specific chronic pain. The results reveal the importance of the therapeutic alliance between the patient and caregiver, taking time, listening, providing a clear explanation, and the possible outcomes when doing so. The findings from this study can be used to facilitate healthcare professionals in providing Pain Neuroscience Education to patients with non-specific chronic pain. Implications for RehabilitationAn extensive biopsychosocial patient centred intake is crucial prior to providing Pain Neuroscience Education.Repetitions of Pain Neuroscience Education, in different forms (verbal and written information, examples, drawings, etc.) help patients to understand the theory of neurophysiology.Pain Neuroscience Education induces insight into the patient’s complaints, improved coping with complaints, improved self-control, and induces in some cases peace of mind.Healthcare professionals providing Pain Neuroscience Education should be aware of the possible confronting nature of the contributing factors

    What is important in transdisciplinary pain neuroscience education? : A qualitative study

    No full text
    Purpose: The main focus of Pain Neuroscience Education is around changing patients’ pain perceptions and minimizing further medical care. Even though Pain Neuroscience Education has been studied extensively, the experiences of patients regarding the Pain Neuroscience Education process remain to be explored. Therefore, the aim of this study was to explore the experiences in patients with non-specific chronic pain. Materials and methods: Fifteen patients with non-specific chronic pain from a transdisciplinary treatment centre were in-depth interviewed. Data collection and analysis were performed according to Grounded Theory. Results: Five interacting topics emerged: (1) “the pre-Pain Neuroscience Education phase”, involving the primary needs to provide Pain Neuroscience Education, with subthemes containing (a) “a broad intake” and (b) “the healthcare professionals”; (2) “a comprehensible Pain Neuroscience Education” containing (a) “understandable explanation” and (b) “interaction between the physiotherapist and psychologist”; (3) “outcomes of Pain Neuroscience Education” including (a) “awareness”, b) “finding peace of mind”, and (c) “fewer symptoms”; 4) “"scepticism” containing (a) “doubt towards the diagnosis and Pain Neuroscience Education”, (b) “disagreement with the diagnosis and Pain Neuroscience Education”, and (c) “Pain Neuroscience Education can be confronting”. Conclusion: This is the first study providing insight into the constructs contributing to the Pain Neuroscience Education experience of patients with non-specific chronic pain. The results reveal the importance of the therapeutic alliance between the patient and caregiver, taking time, listening, providing a clear explanation, and the possible outcomes when doing so. The findings from this study can be used to facilitate healthcare professionals in providing Pain Neuroscience Education to patients with non-specific chronic pain. Implications for RehabilitationAn extensive biopsychosocial patient centred intake is crucial prior to providing Pain Neuroscience Education.Repetitions of Pain Neuroscience Education, in different forms (verbal and written information, examples, drawings, etc.) help patients to understand the theory of neurophysiology.Pain Neuroscience Education induces insight into the patient’s complaints, improved coping with complaints, improved self-control, and induces in some cases peace of mind.Healthcare professionals providing Pain Neuroscience Education should be aware of the possible confronting nature of the contributing factors
    corecore