8 research outputs found
Genetics ignite focus on microglial inflammation in Alzheimer’s disease
In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer’s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies.  We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD
A 4D counter-example showing that DWCness does not imply CWCness in n-D
International audienceIn this paper, we prove that the two flavors of well-composedness called Continuous Well-Composedness (shortly CWCness) and Digital Well-Composedness (shortly DWCness) are not equivalent in dimension 4 thanks to an example of a configuration of 8 tesseracts (4D cubes) sharing a common corner (vertex), which is DWC but not CWC. This result is surprising since we know that CWCness and DWCness are equivalent in 2D and 3D. To prove this new result, local (and then relative) homology are used. This paper has been submitted to IWCIA
Digital Curvature Evolution Model for Image Segmentation
International audienceRecent works have indicated the potential of using curvature as a regularizer in image segmentation, in particular for the class of thin and elongated objects. These are ubiquitous in biomedical imaging (e.g. vascular networks), in which length regularization can sometime perform badly, as well as in texture identification. However, curvature is a second-order differential measure, and so its estimators are sensitive to noise. The straightforward extensions to Total Variation are not convex, making them a challenge to optimize. State-of-art techniques make use of a coarse approximation of curvature that limits practical applications.We argue that curvature must instead be computed using a multigrid convergent estimator, and we propose in this paper a new digital curvature flow which mimics continuous curvature flow. We illustrate its potential as a post-processing step to a variational segmentation framework