849 research outputs found

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure

    SPECULOOS exoplanet search and its prototype on TRAPPIST

    Full text link
    One of the most significant goals of modern science is establishing whether life exists around other suns. The most direct path towards its achievement is the detection and atmospheric characterization of terrestrial exoplanets with potentially habitable surface conditions. The nearest ultracool dwarfs (UCDs), i.e. very-low-mass stars and brown dwarfs with effective temperatures lower than 2700 K, represent a unique opportunity to reach this goal within the next decade. The potential of the transit method for detecting potentially habitable Earth-sized planets around these objects is drastically increased compared to Earth-Sun analogs. Furthermore, only a terrestrial planet transiting a nearby UCD would be amenable for a thorough atmospheric characterization, including the search for possible biosignatures, with near-future facilities such as the James Webb Space Telescope. In this chapter, we first describe the physical properties of UCDs as well as the unique potential they offer for the detection of potentially habitable Earth-sized planets suitable for atmospheric characterization. Then, we present the SPECULOOS ground-based transit survey, that will search for Earth-sized planets transiting the nearest UCDs, as well as its prototype survey on the TRAPPIST telescopes. We conclude by discussing the prospects offered by the recent detection by this prototype survey of a system of seven temperate Earth-sized planets transiting a nearby UCD, TRAPPIST-1.Comment: Submitted as a chapter in the "Handbook of Exoplanets" (editors: H. Deeg & J.A. Belmonte; Section Editor: N. Narita). 16 pages, 4 figure

    Derivative spectrophotometric analysis of benzophenone (as an impurity) in phenytoin

    Get PDF
    Three simple and rapid spectrophotometric methods were developed for detection and trace determination of benzophenone (the main impurity) in phenytoin bulk powder and pharmaceutical formulations. The first method, zero-crossing first derivative spectrophotometry, depends on measuring the first derivative trough values at 257.6 nm for benzophenone. The second method, zero-crossing third derivative spectrophotometry, depends on measuring the third derivative peak values at 263.2 nm. The third method, ratio first derivative spectrophotometry, depends on measuring the peak amplitudes of the first derivative of the ratio spectra (the spectra of benzophenone divided by the spectrum of 5.0 μg/mL phenytoin solution) at 272 nm. The calibration graphs were linear over the range of 1-10 μg/mL. The detection limits of the first and the third derivative methods were found to be 0.04 μg/mL and 0.11 μg/mL and the quantitation limits were 0.13 μg/mL and 0.34 μg/mL, respectively, while for the ratio derivative method, the detection limit was 0.06 μg/mL and the quantitation limit was 0.18 μg/mL. The proposed methods were applied successfully to the assay of the studied drug in phenytoin bulk powder and certain pharmaceutical preparations. The results were statistically compared to those obtained using a polarographic method and were found to be in good agreement

    Planet formation in Binaries

    Full text link
    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.Comment: Review chapter to appear in "Planetary Exploration and Science: Recent Advances and Applications", eds. S. Jin, N. Haghighipour, W.-H. Ip, Springer (v2, numerous typos corrected

    LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM

    Get PDF
    We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric 'pure seesaw' models, both, LFV and slepton mass splittings, occur not only in the left- but also in the right slepton sector. Especially, ratios of LFV slepton decays, such as Br(τ~Rμχ10{\tilde\tau}_R \to \mu \chi^0_1)/Br(τ~Lμχ10{\tilde\tau}_L \to \mu \chi^0_1) are sensitive to the ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts a polarization asymmetry of the outgoing positrons in the decay μ+e+γ\mu^+ \to e^+ \gamma, A ~ [0,1], which differs from the pure seesaw 'prediction' A=1$. Observation of any of these signals allows to distinguish this model from any of the three standard, pure (mSugra) seesaw setups.Comment: 43 pages, 17 figure

    Gravitational Waves from Gravitational Collapse

    Get PDF
    Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state of the art numerical investigations of collapse include those that use progenitors with realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non--axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Practice of ALARA in the pediatric interventional suite

    Get PDF
    As interventional procedures have become progressively more sophisticated and lengthy, the potential for high patient radiation dose has increased. Staff exposure arises from patient scatter, so steps to minimize patient dose will in turn reduce operator and staff dose. The practice of ALARA in an interventional radiology (IR) suite, therefore, requires careful attention to technical detail in order to reduce patient dose. The choice of imaging modality should minimize radiation when and where possible. In this paper practical steps are outlined to reduce patient dose. Further details are included that specifically reduce operator exposure. Challenges unique to pediatric intervention are reviewed. Reference is made to experience from modern pediatric interventional suites. Given the potential for high exposures, the practice of ALARA is a team responsibility. Various measures are outlined for consideration when implementing a quality assurance (QA) program for an IR service

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    A Multispecialty Evaluation of Thiel Cadavers for Surgical Training

    Get PDF
    Background: Changes in UK legislation allow for surgical procedures to be performed on cadavers. The aim of this study was to assess Thiel cadavers as high-fidelity simulators and to examine their suitability for surgical training. Methods: Surgeons from various specialties were invited to attend a 1 day dissection workshop using Thiel cadavers. The surgeons completed a baseline questionnaire on cadaveric simulation. At the end of the workshop, they completed a similar questionnaire based on their experience with Thiel cadavers. Comparing the answers in the pre- and post-workshop questionnaires assessed whether using Thiel cadavers had changed the surgeons’ opinions of cadaveric simulation. Results: According to the 27 participants, simulation is important for surgical training and a full-procedure model is beneficial for all levels of training. Currently, there is dissatisfaction with existing models and a need for high-fidelity alternatives. After the workshop, surgeons concluded that Thiel cadavers are suitable for surgical simulation (p = 0.015). Thiel were found to be realistic (p < 0.001) to have reduced odour (p = 0.002) and be more cost-effective (p = 0.003). Ethical constraints were considered to be small. Conclusion: Thiel cadavers are suitable for training in most surgical specialties
    corecore