2,013 research outputs found

    Circulating bile acids and adenoma recurrence in the context of adherence to a high-fiber, high-fruit and vegetable, and low-fat dietary intervention

    Get PDF
    INTRODUCTION: Diet may affect bile acid (BA) metabolism and signaling. In turn, BA concentrations may be associated with cancer risk. We investigated (i) associations of BA concentrations with adenoma recurrence and (ii) the effect of a high-fiber, high-fruit and vegetable, and low-fat dietary intervention on serum BA concentrations. METHODS: The Polyp Prevention Trial is a 4-year randomized, controlled trial that investigated the effect of a high-fiber, high-fruit and vegetable, and low-fat diet on colorectal adenoma recurrence. Among 170 participants who reported adhering to the intervention and 198 comparable control arm participants, we measured 15 BAs in baseline, year 2, and year 3 serum using targeted, quantitative liquid chromatography-tandem mass spectrometry. We estimated associations of BAs with adenoma recurrence using multivariable logistic regression and the effect of the dietary intervention on BA concentrations using repeated-measures linear mixed-effects models. In a subset (N = 65), we investigated associations of BAs with 16S rRNA gene sequenced rectal tissue microbiome characteristics. RESULTS: Baseline total BA concentrations were positively associated with adenoma recurrence (odds ratio Q3 vs Q1 = 2.17; 95% confidence interval = 1.19-4.04; Ptrend = 0.03). Although we found no effect of the dietary intervention on BA concentrations, pretrial dietary fiber intake was inversely associated with total baseline BAs (Spearman = -0.15; PFDR = 0.02). BA concentrations were associated with potential colorectal neoplasm-related microbiome features (lower alpha diversity and higher Bacteroides abundance). DISCUSSION: Baseline circulating BAs were positively associated with adenoma recurrence. Although the dietary intervention did not modify BA concentrations, long-term fiber intake may be associated with lower concentrations of BAs that are associated with higher risk of adenoma recurrence

    Chemical Evolution of CoCrMo Wear Particles: An in Situ Characterization Study

    Get PDF
    The unexpected high failure rates of CoCrMo hip implants are associated with the release of a large number of inflammatory wear particles. CoCrMo is nominally a stable material; however, previous chemical speciation studies on CoCrMo wear particles obtained from periprosthetic tissue revealed only trace amounts of Co remaining despite Co being the major component of the alloy. The unexpected high levels of Co dissolution in vivo raised significant clinical concerns particularly related to the Cr speciation in the dissolution process. At high electrochemical potentials, the alloy's Cr-rich passive film breaks down (transpassive polarization), facilitating alloy dissolution. The potential release of the carcinogenic Cr(VI) species in vivo has been a subject of debate. While the large-scale Co dissolution observed on in vivo produced particles could indicate a highly oxidizing in vivo environment, Cr(VI) species were not previously detected in periprosthetic tissue samples (except in the specific case of post-mortem tissue of diabetic patients). However, Cr(VI) is likely to be an unstable (transient) species in biological environments, and studies on periprosthetic tissue do not provide information about intermediate reaction products or the exposure history of the wear particles. Here, an in situ spectromicroscopy approach was developed, utilizing the high chemical resolution of synchrotron radiation, to study CoCrMo reactivity as a function of time and oxidizing conditions. The results reveal limited Co dissolution from CoCrMo particles, which increases dramatically at a critical electrochemical potential. Furthermore, in situ XAS detected only Cr(III) dissolution, even at potentials where Cr(VI) is known to be produced, suggesting that Cr(VI) species are extremely transient in simulated biological environments where the oxidation zone is small

    Benefits of restoring ecosystem services in urban areas

    Get PDF
    Cities are a key nexus of the relationship between people and nature and are huge centers of demand for ecosystem services and also generate extremely large environmental impacts. Current projections of rapid expansion of urban areas present fundamental challenges and also opportunities to design more livable, healthy and resilient cities (e.g. adaptation to climate change effects). We present the results of an analysis of benefits of ecosystem services in urban areas. Empirical analyses included estimates of monetary benefits from urban ecosystem services based on data from 25 urban areas in the USA, Canada, and China. Our results show that investing in ecological infrastructure in cities, and the ecological restoration and rehabilitation of ecosystems such as rivers, lakes, and woodlands occurring in urban areas, may not only be ecologically and socially desirable, but also quite often, economically advantageous, even based on the most traditional economic approaches.Peer reviewe

    Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics

    Full text link
    The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional (2D) crystals, which can be assembled in 3D stacks with atomic layer precision. These layered structures have already led to a range of fascinating physical phenomena, and also have been used in demonstrating a prototype field effect tunnelling transistor - a candidate for post-CMOS technology. The range of possible materials which could be incorporated into such stacks is very large. Indeed, there are many other materials where layers are linked by weak van der Waals forces, which can be exfoliated and combined together to create novel highly-tailored heterostructures. Here we describe a new generation of field effect vertical tunnelling transistors where 2D tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or CVD-grown graphene. Our devices have unprecedented current modulation exceeding one million at room temperature and can also operate on transparent and flexible substrates

    Sandstone matrix acidizing knowledge and future development

    Get PDF
    To meet rising global demands for energy, the oil and gas industry continuously strives to develop innovative oilfield technologies. With the development of new enhanced oil recovery techniques, sandstone acidizing has been significantly developed to contribute to the petroleum industry. Different acid combinations have been applied to the formation, which result in minimizing the near wellbore damage and improving the well productivity. A combination of hydrofluoric acid and hydrochloric acid (HF:HCl) known as mud acid has gained attractiveness in improving the porosity and permeability of the reservoir formation. However, high-temperature matrix acidizing is now growing since most of the wells nowadays become deeper and hotter temperature reservoirs, with a temperature higher than 200 °F. As a result, mud acid becomes corrosive, forms precipitates and reacts rapidly, which causes early consumption of acid, hence becoming less efficient due to high pH value. However, different acids have been developed to combat these problems where studies on retarded mud acids, organic-HF acids, emulsified acids, chelating agents have shown their effectiveness at different conditions. These acids proved to be alternative to mud acid in sandstone acidizing, but the reaction mechanism and experimental analysis have not yet been investigated. The paper critically reviews the sandstone acidizing mechanism with different acids, problems occurred during the application of different acids and explores the reasons when matrix stimulation is successful over fracturing. This paper also explores the future developing requirement for matrix acidizing treatments and new experimental techniques that can be useful for further development, particularly in developing new acids and acidizing techniques, which would provide better results and information of topology, morphology and mineral dissolution and the challenges associated with implementing these “new” technologies

    Mortality within 30 days of chemotherapy: a clinical governance benchmarking issue for oncology patients

    Get PDF
    No national benchmark figures exist for early mortality due to chemotherapy unlike for surgical interventions. Deaths within 30 days of chemotherapy during a 6-month period were identified from the Royal Marsden Hospital electronic patient records. Treatment intention – curative or palliative, cause of death and number of previous treatments – were documented. Between April 2005 and September 2005, 1976 patients received chemotherapy with 161 deaths within 30 days of chemotherapy (8.1%). Of these, 124 deaths (77.0%) were due to disease progression. Of the other 37 deaths, 12 (7.5%) were related to chemotherapy, six each for solid tumours and haematological malignancies, of which seven (4.3%) were due to neutropenic sepsis. For the remaining 25 deaths (15.5%) there was insufficient information. There were more deaths after third and subsequent lines of therapy than with first and secondlines of therapy. Only 12 of the 161 deaths occurred in patients who were receiving potentially curative chemotherapy to give a mortality rate in breast and gastrointestinal malignancy of 0.5 and 1.5%, respectively. It is possible to audit mortality within 30 days of chemotherapy and this should become a benchmark for standard practice nationally. Most deaths were due to disease progression in the palliative setting. We practice this form of audit each quarter and feed back to the treating teams so that deaths are discussed and practice monitored

    A danger of low copy numbers for inferring incorrect cooperativity degree

    Get PDF
    Background: A dose-response curve depicts fraction of bound proteins as a function of unbound ligands. Dose-response curves are used to measure the cooperativity degree of a ligand binding process. Frequently, the Hill function is used to fit the experimental data. The Hill function is parameterized by the value of the dissociation constant, and the Hill coefficient which describes the cooperativity degree. The use of Hill's model and the Hill function have been heavily criticised in this context, predominantly the assumption that all ligands bind at once, which lead to further refinements of the model. In this work, the validity of the Hill function has been studied from an entirely different point of view. In the limit of low copy numbers the dynamics of the system becomes noisy. The goal was to asses the validity of the Hill function in this limit, and to see in which ways the effects of the fluctuations change the form of the dose-response curves. Results: Dose-response curves were computed taking into account effects of fluctuations. The effects of fluctuations were described at the lowest order (the second moment of the particle number distribution) by using previously developed Pair Approach Reaction Noise EStimator (PARNES) method. The stationary state of the system is described by nine equations with nine unknowns. To obtain fluctuation corrected dose-response curves the equations have been investigated numerically. Conclusions: The Hill function cannot describe dose-response curves in a low particle limit. First, dose-response curves are not solely parameterized by the dissociation constant and the Hill coefficient. In general, the shape of a dose-response curve depends on the variables that describe how an experiment (ensemble) is designed. Second, dose-response curves are multi valued in a rather non-trivial way

    Brain and Spinal Cord Interaction: Protective Effects of Exercise Prior to Spinal Cord Injury

    Get PDF
    We have investigated the effects of a spinal cord injury on the brain and spinal cord, and whether exercise provided before the injury could organize a protective reaction across the neuroaxis. Animals were exposed to 21 days of voluntary exercise, followed by a full spinal transection (T7–T9) and sacrificed two days later. Here we show that the effects of spinal cord injury go beyond the spinal cord itself and influence the molecular substrates of synaptic plasticity and learning in the brain. The injury reduced BDNF levels in the hippocampus in conjunction with the activated forms of p-synapsin I, p-CREB and p-CaMK II, while exercise prior to injury prevented these reductions. Similar effects of the injury were observed in the lumbar enlargement region of the spinal cord, where exercise prevented the reductions in BDNF, and p-CREB. Furthermore, the response of the hippocampus to the spinal lesion appeared to be coordinated to that of the spinal cord, as evidenced by corresponding injury-related changes in BDNF levels in the brain and spinal cord. These results provide an indication for the increased vulnerability of brain centers after spinal cord injury. These findings also imply that the level of chronic activity prior to a spinal cord injury could determine the level of sensory-motor and cognitive recovery following the injury. In particular, exercise prior to the injury onset appears to foster protective mechanisms in the brain and spinal cord

    Genetics of callous-unemotional behavior in children

    Get PDF
    Callous-unemotional behavior (CU) is currently under consideration as a subtyping index for conduct disorder diagnosis. Twin studies routinely estimate the heritability of CU as greater than 50%. It is now possible to estimate genetic influence using DNA alone from samples of unrelated individuals, not relying on the assumptions of the twin method. Here we use this new DNA method (implemented in a software package called Genome-wide Complex Trait Analysis, GCTA) for the first time to estimate genetic influence on CU. We also report the first genome-wide association (GWA) study of CU as a quantitative trait. We compare these DNA results to those from twin analyses using the same measure and the same community sample of 2,930 children rated by their teachers at ages 7, 9 and 12. GCTA estimates of heritability were near zero, even though twin analysis of CU in this sample confirmed the high heritability of CU reported in the literature, and even though GCTA estimates of heritability were substantial for cognitive and anthropological traits in this sample. No significant associations were found in GWA analysis, which, like GCTA, only detects additive effects of common DNA variants. The phrase ‘missing heritability’ was coined to refer to the gap between variance associated with DNA variants identified in GWA studies versus twin study heritability. However, GCTA heritability, not twin study heritability, is the ceiling for GWA studies because both GCTA and GWA are limited to the overall additive effects of common DNA variants, whereas twin studies are not. This GCTA ceiling is very low for CU in our study, despite its high twin study heritability estimate. The gap between GCTA and twin study heritabilities will make it challenging to identify genes responsible for the heritability of CU
    corecore