1,425 research outputs found
Multiple transmission filters for enhanced energy in modelocked fiber lasers
Author name used in this publication: Alex P. K. A. WaiVersion of RecordPublishe
Vanishing of phase coherence in underdoped Bi_2Sr_2CaCu_2O_8+d
Coherent time-domain spectroscopy is used to measure the screening and
dissipation of high-frequency electromagnetic fields in a set of underdoped
Bi_2Sr_2CaCu_2O_8+d thin films. The measurements provide direct evidence for a
phase-fluctuation driven transition from the superconductor to normal state,
with dynamics described well by the Berezinskii-Kosterlitz-Thouless theory of
vortex-pair unbinding.Comment: Nature, Vol. 398, 18 March 1999, pg. 221 4 pages with 4 included
figure
A comparative evaluation of PDQ-Evidence
BACKGROUND: A strategy for minimising the time and obstacles to accessing systematic reviews of health system
evidence is to collect them in a freely available database and make them easy to find through a simple ‘Google-style’
search interface. PDQ-Evidence was developed in this way. The objective of this study was to compare PDQ-Evidence
to six other databases, namely Cochrane Library, EVIPNet VHL, Google Scholar, Health Systems Evidence, PubMed
and Trip.
METHODS: We recruited healthcare policy-makers, managers and health researchers in low-, middle- and highincome
countries. Participants selected one of six pre-determined questions. They searched for a systematic
review that addressed the chosen question and one question of their own in PDQ-Evidence and in two of the
other six databases which they would normally have searched. We randomly allocated participants to search
PDQ-Evidence first or to search the two other databases first. The primary outcomes were whether a systematic
review was found and the time taken to find it. Secondary outcomes were perceived ease of use and perceived
time spent searching. We asked open-ended questions about PDQ-Evidence, including likes, dislikes, challenges
and suggestions for improvements.
RESULTS: A total of 89 people from 21 countries completed the study; 83 were included in the primary analyses
and 6 were excluded because of data errors that could not be corrected. Most participants chose PubMed and
Cochrane Library as the other two databases. Participants were more likely to find a systematic review using
PDQ-Evidence than using Cochrane Library or PubMed for the pre-defined questions. For their own questions, this
difference was not found. Overall, it took slightly less time to find a systematic review using PDQ-Evidence. Participants
perceived that it took less time, and most participants perceived PDQ-Evidence to be slightly easier to use than the
two other databases. However, there were conflicting views about the design of PDQ-Evidence.
CONCLUSIONS: PDQ-Evidence is at least as efficient as other databases for finding health system evidence. However,
using PDQ-Evidence is not intuitive for some people
Kank Is an EB1 Interacting Protein that Localises to Muscle-Tendon Attachment Sites in Drosophila
Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells. Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells
Supramolecular synthon pattern in solid clioquinol and cloxiquine (APIs of antibacterial, antifungal, antiaging and antituberculosis drugs) studied by 35Cl NQR, 1H-17O and 1H-14N NQDR and DFT/QTAIM
The quinolinol derivatives clioquinol (5-chloro-7-iodo-8-quinolinol, Quinoform) and cloxiquine (5-chloro-8-quinolinol) were studied experimentally in the solid state via 35Cl NQR, 1H-17O and 1H-14N NQDR spectroscopies, and theoretically by density functional theory (DFT). The supramolecular synthon pattern of O–H···N hydrogen bonds linking dimers and π–π stacking interactions were described within the QTAIM (quantum theory of atoms in molecules) /DFT (density functional theory) formalism. Both proton donor and acceptor sites in O–H···N bonds were characterized using 1H-17O and 1H-14N NQDR spectroscopies and QTAIM. The possibility of the existence of O–H···H–O dihydrogen bonds was excluded. The weak intermolecular interactions in the crystals of clioquinol and cloxiquine were detected and examined. The results obtained in this work suggest that considerable differences in the NQR parameters for the planar and twisted supramolecular synthons permit differentiation between specific polymorphic forms, and indicate that the more planar supramolecular synthons are accompanied by a greater number of weaker hydrogen bonds linking them and stronger π···π stacking interactions
Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity
MDM2–MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2–MDMX–E2(UbcH5B)–ubiquitin complex, we designed MDM2 mutants that prevent E2–ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53′s transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors
Mammographic density. Measurement of mammographic density
Mammographic density has been strongly associated with increased risk of breast cancer. Furthermore, density is inversely correlated with the accuracy of mammography and, therefore, a measurement of density conveys information about the difficulty of detecting cancer in a mammogram. Initial methods for assessing mammographic density were entirely subjective and qualitative; however, in the past few years methods have been developed to provide more objective and quantitative density measurements. Research is now underway to create and validate techniques for volumetric measurement of density. It is also possible to measure breast density with other imaging modalities, such as ultrasound and MRI, which do not require the use of ionizing radiation and may, therefore, be more suitable for use in young women or where it is desirable to perform measurements more frequently. In this article, the techniques for measurement of density are reviewed and some consideration is given to their strengths and limitations
Characterizing genomic alterations in cancer by complementary functional associations.
Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes
Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films
Unambiguous and selective standoff (non-contact) infield detection of nitro-containingexplosives and taggants is an important goal but difficult to achieve with standard analyticaltechniques. Oxidative fluorescence quenching is emerging as a high sensitivity method fordetecting such materials but is prone to false positives—everyday items such as perfumeselicit similar responses. Here we report thin films of light-emitting dendrimers that detectvapours of explosives and taggants selectively—fluorescence quenching is not observed for arange of common interferents. Using a combination of neutron reflectometry, quartz crystalmicrobalance and photophysical measurements we show that the origin of the selectivity isprimarily electronic and not the diffusion kinetics of the analyte or its distribution in the film.The results are a major advance in the development of sensing materials for the standoffdetection of nitro-based explosive vapours, and deliver significant insights into the physicalprocesses that govern the sensing efficacy
- …