199 research outputs found

    Economic analysis of Uricase production under uncertainty: Contrast of chromatographic purification and aqueous two-phase extraction (with and without PEG recycle)

    Get PDF
    Uricase is the enzyme responsible for the breakdown of uric acid, the key molecule leading to gout in humans, into allantoin, but it is absent in humans. It has been produced as a PEGylated pharmaceutical where the purification is performed through three sequential chromatographic columns. More recently an aqueous two-phase system (ATPS) was reported that could recover Uricase with high yield and purity. Although the use of ATPS can decrease cost and time, it also generates a large amount of waste. The ability, therefore, to recycle key components of ATPS is of interest. Economic modelling is a powerful tool that allows the bioprocess engineer to compare possible outcomes and find areas where further research or optimization might be required without recourse to extensive experiments and time. This research provides an economic analysis using the commercial software BioSolve of the strategies for Uricase production: chromatographic and ATPS, and includes a third bioprocess that utilises material recycling. The key parameters that affect the process the most were located via a sensitivity analysis and evaluated with a Monte Carlo analysis. Results show that ATPS is far less expensive than chromatography, but that there is an area where the cost of production of both bioprocesses overlap. Furthermore, recycling doesn't impact the cost of production. This study serves to provide a framework for the economic analysis of Uricase production using alternative techniques. This article is protected by copyright. All rights reserved

    Potential of genomic technologies to improve disease resistance in molluscan aquaculture

    Get PDF
    Molluscan aquaculture is a major contributor to global seafood production, but is hampered by infectious disease outbreaks that can cause serious economic losses. Selective breeding has been widely used to improve disease resistance in major agricultural and aquaculture species, and has clear potential in molluscs, albeit its commercial application remains at a formative stage. Advances in genomic technologies, especially the development of cost-efficient genomic selection, have the potential to accelerate genetic improvement. However, tailored approaches are required owing to the distinctive reproductive and life cycle characteristics of molluscan species. Transgenesis and genome editing, in particular CRISPR/Cas systems, have been successfully trialled in molluscs and may further understanding and improvement of genetic resistance to disease through targeted changes to the host genome. Whole-organism genome editing is achievable on a much greater scale compared to other farmed species, making genome-wide CRISPR screening approaches plausible. This review discusses the current state and future potential of selective breeding, genomic tools and genome editing approaches to understand and improve host resistance to infectious disease in molluscs. This article is part of the Theo Murphy meeting issue ‘Molluscan genomics: broad insights and future directions for a neglected phylum’

    Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation

    Get PDF
    BACKGROUND: Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. METHODOLOGY/PRINCIPAL FINDINGS: To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg(2+). The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg(2+), 0.12 and CH(3)Hg(+), 0.08. The addition of Hg(2+) (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg(2+) addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg(2+) no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg(2+) showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg(2+) (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h. CONCLUSIONS/SIGNIFICANCE: A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain useful for mercury bioremediation

    Urinary exosome miR-146a is a potential marker of albuminuria in essential hypertension

    Get PDF
    BACKGROUND: There is increasing interest in using extracellular vesicle-derived microRNAs (miRNAs) as biomarkers in renal dysfunction and injury. Preliminary evidence indicates that miRNAs regulate the progression of glomerular disease. Indeed, exosomes from the renal system have provided novel evidence in the clinical setting of albuminuria. Thus, the aim of this study was to quantify the urinary miRNAs present in exosome and microvesicles (MVs), and to assess their association with the presence of increased urinary albumin excretion in essential hypertension. METHODS: Exosomes were collected from urine specimens from a cohort of hypertensive patients with (n = 24) or without albuminuria (n = 28), and from 20 healthy volunteers as a control group. Urinary exosomes were phenotyped by Western blot, tunable resistive pulse sensing, and electronic microscopy. Expression of miR-146a and miR-335* was analysed by qRT-PCR and any associations between albuminuria and exosomal miRNAs were analysed. RESULTS: Urinary miRNAs are highly enriched in exosome subpopulations compared to MVs, both in patients with or without increased albuminuria (p < 0.001), but not in the control group. High albuminuria was associated with 2.5-fold less miR-146a in exosomes (p = 0.017), whereas miR-146a levels in MV did not change. In addition, exosome miR-146a levels were inversely associated with albuminuria (r = 0.65, p < 0.0001), and discriminated the presence of urinary albumin excretion presence [area under the curve = 0.80, 95% confidence interval: 0.66-0.95; p = 0.0013]. CONCLUSIONS: Our results indicate that miRNAs were enriched in the urinary exosome subpopulation in hypertensive patients and that low miR-146a expression in exosomes was associated with the presence of albuminuria. Thus, urinary exosome miR-146a may be a potentially useful tool for studying early renal injury in hypertension

    Temperature Anomalies and Mortality Events in Marine Communities: Insights on Factors behind Differential Mortality Impacts in the NW Mediterranean

    Get PDF
    Two large-scale mass mortality events (MMEs) of unprecedented extent and severity affecting rocky benthic communities occurred during the summers of 1999 and 2003 along the coasts of the NW Mediterranean Sea. These mortality outbreaks were associated with positive thermal anomalies. In this study, we performed an analysis of inter-regional and inter-annual differences in temperature (T) conditions associated with MMEs of the red gorgonian Paramuricea clavata by analyzing high resolution T time series (hourly records for 3 to 8 years) from four regions of the NW Mediterranean with differing hydrological conditions and biological impacts. High resolution records allowed a detailed analysis using classical and new descriptors to characterize T anomalies. We were able to determine that the MMEs were triggered by two main types of positive thermal anomalies, with the first type being characterized by short periods (2 to 5 days) with high Mean T reaching more than 27°C in some regions and being associated with high intra-day and intra-period variability, while the second type of anomaly presented long duration (near one month) at warm T (24°C) with low intra-period variability. Inter-regional patterns arose; some regions displayed both types of anomalies, while others exhibited only one type. The results showed that T conditions should be considered as the main factor that explains the observed inter-regional and inter-annual differences in mortality impacts. In explaining these differences, the late timing of T anomalies, in addition to their magnitude was found to be determinant. Finally, by combining thermotolerance experimental data with the maximal T stress conditions observed in the four regions, we were able to determine the differential risk of mass mortality across regions. We conclude that expanding high resolution T series is important for the development of sound management and conservation plans to protect Mediterranean marine biodiversity in the face of climate change

    Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers
    corecore