82 research outputs found

    Elimination of wild-type P53 mRNA in glioblastomas showing heterozygous mutations of P53

    Get PDF
    We screened 50 glioblastomas for P53 mutations. Five glioblastomas showed heterozygous mutations, while three were putatively heterozygous. Six of these eight glioblastomas showed elimination of wild-type P53 mRNA. These results strongly suggest that some sort of mechanism(s) favouring mutated over wild-type P53 mRNA exists in glioblastoma cells with heterozygous mutations of this gene

    Disruption of the MDM2–p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway

    Get PDF
    Wild-type p53 has a major role in the response and execution of apoptosis after chemotherapy in many cancers. Although high levels of wild-type p53 and hardly any TP53 mutations are found in testicular cancer (TC), chemotherapy resistance is still observed in a significant subgroup of TC patients. In the present study, we demonstrate that p53 resides in a complex with MDM2 at higher cisplatin concentrations in cisplatin-resistant human TC cells compared with cisplatin-sensitive TC cells. Inhibition of the MDM2–p53 interaction using either Nutlin-3 or MDM2 RNA interference resulted in hyperactivation of the p53 pathway and a strong induction of apoptosis in cisplatin-sensitive and -resistant TC cells. Suppression of wild-type p53 induced resistance to Nutlin-3 in TC cells, demonstrating the key role of p53 for Nutlin-3 sensitivity. More specifically, our results indicate that p53-dependent induction of Fas membrane expression (∼threefold) and enhanced Fas/FasL interactions at the cell surface are important mechanisms of Nutlin-3-induced apoptosis in TC cells. Importantly, an analogous Fas-dependent mechanism of apoptosis upon Nutlin-3 treatment is executed in wild-type p53 expressing Hodgkin lymphoma and acute myeloid leukaemia cell lines. Finally, we demonstrate that Nutlin-3 strongly augmented cisplatin-induced apoptosis and cell kill via the Fas death receptor pathway. This effect is most pronounced in cisplatin-resistant TC cells

    A Latent Pro-survival Function for the Mir-290-295 Cluster in Mouse Embryonic Stem Cells

    Get PDF
    MicroRNAs (miRNAs) post-transcriptionally regulate the expression of thousands of distinct mRNAs. While some regulatory interactions help to maintain basal cellular functions, others are likely relevant in more specific settings, such as response to stress. Here we describe such a role for the mir-290-295 cluster, the dominant miRNA cluster in mouse embryonic stem cells (mESCs). Examination of a target list generated from bioinformatic prediction, as well as expression data following miRNA loss, revealed strong enrichment for apoptotic regulators, two of which we validated directly: Caspase 2, the most highly conserved mammalian caspase, and Ei24, a p53 transcriptional target. Consistent with these predictions, mESCs lacking miRNAs were more likely to initiate apoptosis following genotoxic exposure to gamma irradiation or doxorubicin. Knockdown of either candidate partially rescued this pro-apoptotic phenotype, as did transfection of members of the mir-290-295 cluster. These findings were recapitulated in a specific mir-290-295 deletion line, confirming that they reflect miRNA functions at physiological levels. In contrast to the basal regulatory roles previously identified, the pro-survival phenotype shown here may be most relevant to stressful gestations, where pro-oxidant metabolic states induce DNA damage. Similarly, this cluster may mediate chemotherapeutic resistance in a neoplastic context, making it a useful clinical target.National Institutes of Health (U.S.) (NIH grant RO1-GM34277)National Cancer Institute (U.S.) (NCI grant PO1-CA42063)National Cancer Institute (U.S.) (NCI Cancer Center Support (core) grant P30-CA14051

    Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1

    Get PDF
    Our previous studies have shown that microRNA-383 (miR-383) expression is downregulated in the testes of infertile men with maturation arrest (MA). However, the underlying mechanisms of miR-383 involved in the pathogenesis of MA remain unknown. In this study, we showed that downregulation of miR-383 was associated with hyperactive proliferation of germ cells in patients with mixed patterns of MA. Overexpression of miR-383 in NT2 (testicular embryonal carcinoma) cells resulted in suppression of proliferation, G1-phase arrest and induction of apoptosis, whereas silencing of miR-383 reversed these effects. The effects of miR-383 were mediated through targeting a tumor suppressor, interferon regulatory factor-1 (IRF1), and miR-383 was negatively correlated with IRF1 protein expression in vivo. miR-383 inhibited IRF1 by affecting its mRNA stability, which subsequently reduced the levels of the targets of IRF1, namely cyclin D1, CDK2 and p21. Downregulation of IRF1 or cyclin D1, but not that of CDK2, enhanced miR-383-mediated effects, whereas silencing of p21 partially inhibited the effects of miR-383. Moreover, miR-383 downregulated CDK4 by increasing proteasome-dependent degradation of CDK4, which in turn resulted in an inhibition of phosphorylated retinoblastoma protein (pRb) phosphorylation. These results suggest that miR-383 functions as a negative regulator of proliferation by targeting IRF1, in part, through inactivation of the pRb pathway. Abnormal testicular miR-383 expression may potentiate the connections between male infertility and testicular germ cell tumor

    EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours

    Get PDF
    Missense mutations in TP53 gene promote metastasis in human tumours. However, little is known about the complete loss of function of p53 in tumour metastasis. Here we show that squamous cell carcinomas generated by the specific ablation of Trp53 gene in mouse epidermis are highly metastatic. Biochemical and genome-wide mRNA and miRNA analyses demonstrated that metastases are associated with the early induction of epithelial-mesenchymal transition (EMT) and deregulated miRNA expression in primary tumours. Increased expression of miR-21 was observed in undifferentiated, prometastatic mouse tumours and in human tumours characterized by p53 mutations and distant metastasis. The augmented expression of miR-21, mediated by active mTOR and Stat3 signalling, conferred increased invasive properties to mouse keratinocytes in vitro and in vivo, whereas blockade of miR-21 in a metastatic spindle cell line inhibits metastasis development. Collectively these data identify novel molecular mechanisms leading to metastasis in vivo originated by p53 loss in epithelia

    A 3β€²-Untranslated Region (3β€²UTR) Induces Organ Adhesion by Regulating miR-199a* Functions

    Get PDF
    Mature microRNAs (miRNAs) are single-stranded RNAs of 18–24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3β€²UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3β€²UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3β€²UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3β€²UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3β€²UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3β€²UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3β€²UTR may be an approach in the development of gene therapy

    Scoring of senescence signalling in multiple human tumour gene expression datasets, identification of a correlation between senescence score and drug toxicity in the NCI60 panel and a pro-inflammatory signature correlating with survival advantage in peritoneal mesothelioma

    Get PDF
    Background: Cellular senescence is a major barrier to tumour progression, though its role in pathogenesis of cancer and other diseases is poorly understood in vivo. Improved understanding of the degree to which latent senescence signalling persists in tumours might identify intervention strategies to provoke "accelerated senescence" responses as a therapeutic outcome. Senescence involves convergence of multiple pathways and requires ongoing dynamic signalling throughout its establishment and maintenance. Recent discovery of several new markers allows for an expression profiling approach to study specific senescence phenotypes in relevant tissue samples. We adopted a "senescence scoring" methodology based on expression profiles of multiple senescence markers to examine the degree to which signals of damage-associated or secretory senescence persist in various human tumours. Results: We first show that scoring captures differential induction of damage or inflammatory pathways in a series of public datasets involving radiotherapy of colon adenocarcinoma, chemotherapy of breast cancer cells, replicative senescence of mesenchymal stem cells, and progression of melanoma. We extended these results to investigate correlations between senescence score and growth inhibition in response to similar to 1500 compounds in the NCI60 panel. Scoring of our own mesenchymal tumour dataset highlighted differential expression of secretory signalling pathways between distinct subgroups of MPNST, liposarcomas and peritoneal mesothelioma. Furthermore, a proinflammatory signature yielded by hierarchical clustering of secretory markers showed prognostic significance in mesothelioma. Conclusions: We find that "senescence scoring" accurately reports senescence signalling in a variety of situations where senescence would be expected to occur and highlights differential expression of damage associated and secretory senescence pathways in a context-dependent manner

    Distinctive Patterns of MicroRNA Expression Associated with Karyotype in Acute Myeloid Leukaemia

    Get PDF
    Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; however, the genetic aetiology of the disease is not yet fully understood. A quantitative expression profile analysis of 157 mature miRNAs was performed on 100 AML patients representing the spectrum of known karyotypes common in AML. The principle observation reported here is that AMLs bearing a t(15;17) translocation had a distinctive signature throughout the whole set of genes, including the up regulation of a subset of miRNAs located in the human 14q32 imprinted domain. The set included miR-127, miR-154, miR-154*, miR-299, miR-323, miR-368, and miR-370. Furthermore, specific subsets of miRNAs were identified that provided molecular signatures characteristic of the major translocation-mediated gene fusion events in AML. Analysis of variance showed the significant deregulation of 33 miRNAs across the leukaemic set with respect to bone marrow from healthy donors. Fluorescent in situ hybridisation analysis using miRNA-specific locked nucleic acid (LNA) probes on cryopreserved patient cells confirmed the results obtained by real-time PCR. This study, conducted on about a fifth of the miRNAs currently reported in the Sanger database (microrna.sanger.ac.uk), demonstrates the potential for using miRNA expression to sub-classify cancer and suggests a role in the aetiology of leukaemia

    Modeling of miRNA and Drug Action in the EGFR Signaling Pathway

    Get PDF
    MicroRNAs have gained significant interest due to their widespread occurrence and diverse functions as regulatory molecules, which are essential for cell division, growth, development and apoptosis in eukaryotes. The epidermal growth factor receptor (EGFR) signaling pathway is one of the best investigated cellular signaling pathways regulating important cellular processes and its deregulation is associated with severe diseases, such as cancer. In this study, we introduce a systems biological model of the EGFR signaling pathway integrating validated miRNA-target information according to diverse studies, in order to demonstrate essential roles of miRNA within this pathway. The model consists of 1241 reactions and contains 241 miRNAs. We analyze the impact of 100 specific miRNA inhibitors (anit-miRNAs) on this pathway and propose that the embedded miRNA-network can help to identify new drug targets of the EGFR signaling pathway and thereby support the development of new therapeutic strategies against cancer

    Osteopetrosis

    Get PDF
    Osteopetrosis ("marble bone disease") is a descriptive term that refers to a group of rare, heritable disorders of the skeleton characterized by increased bone density on radiographs. The overall incidence of these conditions is difficult to estimate but autosomal recessive osteopetrosis (ARO) has an incidence of 1 in 250,000 births, and autosomal dominant osteopetrosis (ADO) has an incidence of 1 in 20,000 births. Osteopetrotic conditions vary greatly in their presentation and severity, ranging from neonatal onset with life-threatening complications such as bone marrow failure (e.g. classic or "malignant" ARO), to the incidental finding of osteopetrosis on radiographs (e.g. osteopoikilosis). Classic ARO is characterised by fractures, short stature, compressive neuropathies, hypocalcaemia with attendant tetanic seizures, and life-threatening pancytopaenia. The presence of primary neurodegeneration, mental retardation, skin and immune system involvement, or renal tubular acidosis may point to rarer osteopetrosis variants, whereas onset of primarily skeletal manifestations such as fractures and osteomyelitis in late childhood or adolescence is typical of ADO. Osteopetrosis is caused by failure of osteoclast development or function and mutations in at least 10 genes have been identified as causative in humans, accounting for 70% of all cases. These conditions can be inherited as autosomal recessive, dominant or X-linked traits with the most severe forms being autosomal recessive. Diagnosis is largely based on clinical and radiographic evaluation, confirmed by gene testing where applicable, and paves the way to understanding natural history, specific treatment where available, counselling regarding recurrence risks, and prenatal diagnosis in severe forms. Treatment of osteopetrotic conditions is largely symptomatic, although haematopoietic stem cell transplantation is employed for the most severe forms associated with bone marrow failure and currently offers the best chance of longer-term survival in this group. The severe infantile forms of osteopetrosis are associated with diminished life expectancy, with most untreated children dying in the first decade as a complication of bone marrow suppression. Life expectancy in the adult onset forms is normal. It is anticipated that further understanding of the molecular pathogenesis of these conditions will reveal new targets for pharmacotherapy
    • …
    corecore