256 research outputs found

    Thermodynamics of Dyonic Lifshitz Black Holes

    Full text link
    Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.Comment: 26 pages, 4 figure

    Gluon Scattering Amplitudes in Finite Temperature Gauge/Gravity Dualities

    Full text link
    We examine the gluon scattering amplitude in N=4 super Yang-Mills at finite temperature with nonzero R-charge densities, and in Non-Commutative gauge theory at finite temperature. The gluon scattering amplitude is defined as a light-like Wilson loop which lives at the horizon of the T-dual black holes of the backgrounds we consider. We study in detail a special amplitude, which corresponds to forward scattering of a low energy gluon off a high energy one. For this kinematic configuration in the considered backgrounds, we find the corresponding minimal surface which is directly related to the gluon scattering amplitude. We find that for increasing the chemical potential or the non-commutative parameter, the on-shell action corresponding to our Wilson loop in the T-dual space decreases. For all of our solutions the length of the short side of the Wilson loop is constrained by an upper bound which depends on the temperature, the R-charge density and the non-commutative parameter. Due to this constraint, in the limit of zeroth temperature our approach breaks down since the upper bound goes to zero, while by keeping the temperature finite and letting the chemical potential or the non-commutative parameter to approach to zero the limit is smooth.Comment: 30 pages, 16 figures, minor corrections (plus improved numerical computation for the non-commutative case

    Unraveling L_{n,k}: Grassmannian Kinematics

    Get PDF
    It was recently proposed that the leading singularities of the S-Matrix of N = 4 super Yang-Mills theory arise as the residues of a contour integral over a Grassmannian manifold, with space-time locality encoded through residue theorems generalizing Cauchy's theorem to more than one variable. We provide a method to identify the residue corresponding to any leading singularity, and we carry this out very explicitly for all leading singularities at tree level and one-loop. We also give several examples at higher loops, including all generic two-loop leading singularities and an interesting four-loop object. As a special case we consider a 12-pt N^4MHV leading singularity at two loops that has a new kinematic structure involving double square roots. Our analysis results in a simple picture for how the topological structure of loop graphs is reflected in various substructures within the Grassmannian.Comment: 26+11 page

    Thermodynamic Bethe Ansatz Equations for Minimal Surfaces in AdS_3

    Get PDF
    We study classical open string solutions with a null polygonal boundary in AdS_3 in relation to gluon scattering amplitudes in N=4 super Yang-Mills at strong coupling. We derive in full detail the set of integral equations governing the decagonal and the dodecagonal solutions and identify them with the thermodynamic Bethe ansatz equations of the homogeneous sine-Gordon models. By evaluating the free energy in the conformal limit we compute the central charges, from which we observe general correspondence between the polygonal solutions in AdS_n and generalized parafermions.Comment: 25 pages, 4 figures, v2: a figure and references added, minor corrections, v3: references added, minor corrections, to appear in JHE

    The S-Matrix in Twistor Space

    Get PDF
    The simplicity and hidden symmetries of (Super) Yang-Mills and (Super)Gravity scattering amplitudes suggest the existence of a "weak-weak" dual formulation in which these structures are made manifest at the expense of manifest locality. We suggest that this dual description lives in (2,2) signature and is naturally formulated in twistor space. We recast the BCFW recursion relations in an on-shell form that begs to be transformed into twistor space. Our twistor transformation is inspired by Witten's, but differs in treating twistor and dual twistor variables more equally. In these variables the three and four-point amplitudes are amazingly simple; the BCFW relations are represented by diagrammatic rules that precisely define the "twistor diagrams" of Andrew Hodges. The "Hodges diagrams" for Yang-Mills theory are disks and not trees; they reveal striking connections between amplitudes and suggest a new form for them in momentum space. We also obtain a twistorial formulation of gravity. All tree amplitudes can be combined into an "S-Matrix" functional which is the natural holographic observable in asymptotically flat space; the BCFW formula turns into a quadratic equation for this "S-Matrix", providing a holographic description of N=4 SYM and N=8 Supergravity at tree level. We explore loop amplitudes in (2,2) signature and twistor space, beginning with a discussion of IR behavior. We find that the natural pole prescription renders the amplitudes well-defined and free of IR divergences. Loop amplitudes vanish for generic momenta, and in twistor space are even simpler than their tree-level counterparts! This further supports the idea that there exists a sharply defined object corresponding to the S-Matrix in (2,2) signature, computed by a dual theory naturally living in twistor space.Comment: V1: 46 pages + 23 figures. Less telegraphic abstract in the body of the paper. V2: 49 pages + 24 figures. Largely expanded set of references included. Some diagrammatic clarifications added, minor typo fixe

    The particle number in Galilean holography

    Get PDF
    Recently, gravity duals for certain Galilean-invariant conformal field theories have been constructed. In this paper, we point out that the spectrum of the particle number operator in the examples found so far is not a necessary consequence of the existence of a gravity dual. We record some progress towards more realistic spectra. In particular, we construct bulk systems with asymptotic Schrodinger symmetry and only one extra dimension. In examples, we find solutions which describe these Schrodinger-symmetric systems at finite density. A lift to M-theory is used to resolve a curvature singularity. As a happy byproduct of this analysis, we realize a state which could be called a holographic Mott insulator.Comment: 29 pages, 1 rudimentary figure; v2: typo in eqn (3.4), added comments and ref

    Wilson Loop Renormalization Group Flows

    Full text link
    The locally BPS Wilson loop and the pure gauge Wilson loop map under AdS/CFT duality to string world-sheet boundaries with standard and alternate quantizations of the world-sheet fields. This implies an RG flow between the two operators, which we verify at weak coupling. Many additional loop operators exist at strong coupling, with a rich pattern of RG flows.Comment: 10 p, 2 figures. v3: Title change, expanded treatment of RG flow

    Flavor-symmetry Breaking with Charged Probes

    Full text link
    We discuss the recombination of brane/anti-brane pairs carrying D3D3 brane charge in AdS5×S5AdS_5 \times S^5. These configurations are dual to co-dimension one defects in the N=4{\cal N}=4 super-Yang-Mills description. Due to their D3D3 charge, these defects are actually domain walls in the dual gauge theory, interpolating between vacua of different gauge symmetry. A pair of unjoined defects each carry localized (2+1)(2+1) dimensional fermions and possess a global U(N)×U(N)U(N)\times U(N) flavor symmetry while the recombined brane/anti-brane pairs exhibit only a diagonal U(N). We study the thermodynamics of this flavor-symmetry breaking under the influence of external magnetic field.Comment: 21 pages, 10 figure

    Holographic Symmetry-Breaking Phases in AdS3_3/CFT2_2

    Full text link
    In this note we study the symmetry-breaking phases of 3D gravity coupled to matter. In particular, we consider black holes with scalar hair as a model of symmetry-breaking phases of a strongly coupled 1+1 dimensional CFT. In the case of a discrete symmetry, we show that these theories admit metastable phases of broken symmetry and study the thermodynamics of these phases. We also demonstrate that the 3D Einstein-Maxwell theory shows continuous symmetry breaking at low temperature. The apparent contradiction with the Coleman-Mermin-Wagner theorem is discussed.Comment: 15 pages, 7 figur

    Heavy quark density in N=4 SYM: from hedgehog to Lifshitz spacetimes

    Full text link
    We study the effect of an order N^2 density of heavy quarks in strongly coupled N=4 SUSY Yang-Mills theory in the large N limit. This is achieved in the type IIB supergravity dual by introducing a uniformly smeared density of macroscopic string sources stretching to the boundary of AdS_5 x S^5. The backreacted system exhibits a flow from an AdS_5 "hedgehog" geometry to a scaling Lifshitz-like solution Lif_5 x S^5 with dynamical critical exponent z=7, wherein the scaling symmetry is broken by a logarithmic running dilaton. We find an exact black brane solution within the scaling regime which describes the low temperature thermodynamics of the system.Comment: 20 pages, 2 figures, references adde
    corecore