10 research outputs found

    The two phases of the Cambrian Explosion

    Get PDF
    Abstract The dynamics of how metazoan phyla appeared and evolved – known as the Cambrian Explosion – remains elusive. We present a quantitative analysis of the temporal distribution (based on occurrence data of fossil species sampled in each time interval) of lophotrochozoan skeletal species (n = 430) from the terminal Ediacaran to Cambrian Stage 5 (~545 – ~505 Million years ago (Ma)) of the Siberian Platform, Russia. We use morphological traits to distinguish between stem and crown groups. Possible skeletal stem group lophophorates, brachiopods, and molluscs (n = 354) appear in the terminal Ediacaran (~542 Ma) and diversify during the early Cambrian Terreneuvian and again in Stage 2, but were devastated during the early Cambrian Stage 4 Sinsk extinction event (~513 Ma) never to recover previous diversity. Inferred crown group brachiopod and mollusc species (n = 76) do not appear until the Fortunian, ~537 Ma, radiate in the early Cambrian Stage 3 (~522 Ma), and with minimal loss of diversity at the Sinsk Event, continued to diversify into the Ordovician. The Sinsk Event also removed other probable stem groups, such as archaeocyath sponges. Notably, this diversification starts before, and extends across the Ediacaran/Cambrian boundary and the Basal Cambrian Carbon Isotope Excursion (BACE) interval (~541 to ~540 Ma), ascribed to a possible global perturbation of the carbon cycle. We therefore propose two phases of the Cambrian Explosion separated by the Sinsk extinction event, the first dominated by stem groups of phyla from the late Ediacaran, ~542 Ma, to early Cambrian stage 4, ~513 Ma, and the second marked by radiating bilaterian crown group species of phyla from ~513 Ma and extending to the Ordovician Radiation

    New insight into the soft anatomy and shell microstructures of early Cambrian orthothecids (Hyolitha)

    No full text
    Hyoliths (hyolithids and orthothecids) were one of the most successful early biomineralizing lophotrochozoans, and were a key component of the Cambrian evolutionary fauna. However, the morphology, skeletogenesis and anatomy of earliest members of this enigmatic clade, as well as its relationship with other lophotrochozoan phyla remain highly contentious. Here we present a new orthothecid, Longxiantheca mira gen. et sp. nov. preserved as part of the secondarily phosphatized Small Shelly Fossil assemblage from the lower Cambrian Xinji Formation of North China. Longxiantheca mira retains some ancestral traits of the clade with an undifferentiated disc-shaped operculum and a simple conical conch with a two-layered microstructure of aragonitic fibrous bundles. The operculum interior exhibits impressions of soft tissues, including muscle attachment scars, mantle epithelial cells and a central kidney-shaped platform in association with its feeding organ. Our study reveals that the muscular system and tentaculate feeding apparatus in orthothecids appear to be similar to that in hyolithids, suggesting a consistent anatomical configuration among the total group of hyoliths. The new finding of shell secreting cells demonstrates a mantle regulating mode of growth for the operculum. Taking all these data into considerations, especially on the basis of shell microstructures, we argue that hyoliths were an extinct sister group of molluscs

    Revision of Triplicatella (Orthothecida, Hyolitha) with preserved digestive tracts from the early Cambrian Chengjiang Lagerstätte, South China

    No full text
    The cap-shaped shells of Triplicatella are known almost exclusively from small shelly fossil assemblages with articulated specimens showing unequivocally that they represent the operculum of a hyolith. Abundant specimens of Triplicatella opimus from the fine-grained shales of the Chengjiang Lagerstätte of South China with soft-part preservation are documented herein. The soft tissues, including the feeding apparatus and complex digestive system, in T. opimus strongly suggest that Triplicatella was a deposit feeder. The digestive tract of T. opimus consists of two limbs, a spiral loop folded into a chevron-like structure and a slightly recurved to straight anal tube, which are preserved as reddish-black traces enriched in iron. The new anatomical information obtained from T. opimus in the Chengjiang Biota suggests an intermediate stage in the development of the characteristic folded gut of orthothecid hyoliths. The new anatomical information reported here shows that Triplicatella is one of the best-preserved early members of the Orthothecida and promotes our understanding of the general anatomy and evolution of the Hyolitha

    Hyoliths with pedicles illuminate the origin of the brachiopod body plan

    Get PDF
    Hyoliths are a taxonomically problematic group of Palaeozoic lophotrochozoans that are among the first shelly fossils to appear in the Cambrian period. On the basis of their distinctive exoskeleton, hyoliths have historically been classified as a separate phylum with possible affinities to the molluscs, sipunculans or lophophorates—but their precise phylogenetic position remains uncertain. Here, we describe a new orthothecide hyolith from the Chengjiang Lagerstätte (Cambrian Series 2 Stage 3), Pedunculotheca diania Sun, Zhao et Zhu gen. et sp. nov., which exhibits a non-mineralized attachment structure that strikingly resembles the brachiopod pedicle—the first report of a peduncular organ in hyoliths. This organ establishes a sessile, suspension feeding ecology for these orthothecides and—together with other characteristics (e.g. bilaterally symmetrical bivalve shell enclosing a filtration chamber and the differentiation of cardinal areas)—identifies hyoliths as stem-group brachiopods. Our phylogenetic analysis indicates that both hyoliths and crown brachiopods derived from a tommotiid grade, and that the pedicle has a single origin within the brachiopod total group
    corecore