386 research outputs found

    Slow and fast diffusion in a lead sulphate gravity separation process

    Get PDF
    A model for the growth of lead sulphate particles in a gravity separation system from the crystal glassware industry is presented. The lead sulphate particles are an undesirable byproduct, and thus the model is used to ascertain the optimal system temperature configuration such that particle extraction is maximised. The model describes the evolution of a single, spherical particle due to the mass flux of lead particles from a surrounding acid solution. We divide the concentration field into two separate regions. Specifically, a relatively small boundary layer region around the particle is characterised by fast diffusion, and is thus considered quasistatic. In contrast, diffusion in the far-field is slower, and hence assumed to be time-dependent. The final system consisting of two nonlinear, coupled ordinary differential equations for the particle radius and lead concentration, is integrated numerically

    Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer

    Full text link
    Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH

    Patients' and Practitioners' Views of Knee Osteoarthritis and Its Management: A Qualitative Interview Study

    Get PDF
    PURPOSE: To identify the views of patients and care providers regarding the management of knee osteoarthritis (OA) and to reveal potential obstacles to improving health care strategies. METHODS: We performed a qualitative study based on semi-structured interviews of a stratified sample of 81 patients (59 women) and 29 practitioners (8 women, 11 general practitioners [GPs], 6 rheumatologists, 4 orthopedic surgeons, and 8 [4 GPs] delivering alternative medicine). RESULTS: Two main domains of patient views were identified: one about the patient-physician relationship and the other about treatments. Patients feel that their complaints are not taken seriously. They also feel that practitioners act as technicians, paying more attention to the knee than to the individual, and they consider that not enough time is spent on information and counseling. They have negative perceptions of drugs and a feeling of medical uncertainty about OA, which leads to less compliance with treatment and a switch to alternative medicine. Patients believe that knee OA is an inevitable illness associated with age, that not much can be done to modify its evolution, that treatments are of little help, and that practitioners have not much to propose. They express unrealistic fears about the impact of knee OA on daily and social life. Practitioners' views differ from those of patients. Physicians emphasize the difficulty in elaborating treatment strategies and the need for a tool to help in treatment choice. CONCLUSIONS: This qualitative study suggests several ways to improve the patient-practitioner relationship and the efficacy of treatment strategies, by increasing their acceptability and compliance. Providing adapted and formalized information to patients, adopting more global assessment and therapeutic approaches, and dealing more accurately with patients' paradoxal representation of drug therapy are main factors of improvement that should be addressed

    Contribution of S6K1/MAPK signaling pathways in the response to oxidative stress: activation of RSK and MSK by hydrogen peroxide

    Get PDF
    Trobareu correccions de l'article a: http://dx.doi.org/10.1371/annotation/0b485bd9-b1b2-4c60-ab22-3ac5d271dc59Cells respond to different kind of stress through the coordinated activation of signaling pathways such as MAPK or p53. To find which molecular mechanisms are involved, we need to understand their cell adaptation. The ribosomal protein, S6 kinase 1 (S6K1), is a common downstream target of signaling by hormonal or nutritional stress. Here, we investigated the initial contribution of S6K1/MAPK signaling pathways in the cell response to oxidative stress produced by hydrogen peroxide (H2O2). To analyze S6K1 activation, we used the commercial anti-phospho-Thr389-S6K1 antibody most frequently mentioned in the bibliography. We found that this antibody detected an 80-90 kDa protein that was rapidly phosphorylated in response to H2O2 in several human cells. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI3K inhibitors, and knock-down experiments showed that this protein was not S6K1. RSK and MSK proteins were candidate targets of this phosphorylation. We demonstrated that H2O2 stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. This phosphorylation required the activity of either p38 or ERK MAP kinases. Kinase assays showed activation of RSK and MSK by H2O2. Experiments with mouse embryonic fibroblasts from p38 animals" knockout confirmed these observations. Altogether, these findings show that the S6K1 signaling pathway is not activated under these conditions, clarify previous observations probably misinterpreted by non-specific detection of proteins RSK and MSK by the anti-phospho-Thr389-S6K1 antibody, and demonstrate the specific activation of MAPK signaling pathways through ERK/p38/RSK/MSK by H2O2

    Unmet need and psychological distress predict emergency department visits in community-dwelling elderly women: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unmet need to perform activities of daily living (ADL) is associated with increased use of urgent health services by the elderly. However, the reported associations may be confounded by psychological distress. We examine the independent effects of unmet need and psychological distress upon emergency department (ED) visits.</p> <p>Methods</p> <p>We conducted a prospective study of randomly selected community-dwelling adults aged ≥ 75. We report here the results for women only (n = 530). In-person interviews collected data on self-reported unmet need and the 14-item <it>l'Indice de détresse psychologique de Santé Québec </it>psychological distress scale. ED visits were identified from an administrative database. Multivariable logistic regression was used to identify predictors of any ED visit in the 6 months following the baseline interview.</p> <p>Results</p> <p>In multivariable analysis, unmet need in instrumental ADL was associated with subsequent ED visits (odds ratio = 1.57, 95% confidence interval = 1.02-2.41), as was psychological distress (odds rate = 1.30, 95% confidence interval = 1.02-1.67). The magnitude of the association between unmet need and ED visits was overestimated in statistical models that did not adjust for psychological distress.</p> <p>Conclusions</p> <p>Both unmet need and psychological distress were independent predictors of ED visits. Future investigations of unmet need and health services utilization should include psychological distress to control for confounding and improve the internal validity of statistical models.</p

    Hydroxybenzothiazoles as New Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1)

    Get PDF
    17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC50-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics

    Lifespan extension without fertility reduction following dietary addition of the autophagy activator Torin1 in Drosophila melanogaster

    Get PDF
    Autophagy is a highly conserved mechanism for cellular repair that becomes progressively down-regulated during normal ageing. Hence, manipulations that activate autophagy could increase lifespan. Previous reports show that manipulations to the autophagy pathway can result in longevity extension in yeast, flies, worms and mammals. Under standard nutrition, autophagy is inhibited by the nutrient sensing kinase Target of Rapamycin (TOR). Therefore, manipulations of TOR that increase autophagy may offer a mechanism for extending lifespan. Ideally, such manipulations should be specific and minimise off-target effects, and it is important to discover additional methods for ‘clean’ lifespan manipulation. Here we report an initial study into the effect of up-regulating autophagy on lifespan and fertility in Drosophila melanogaster by dietary addition of Torin1. Activation of autophagy using this selective TOR inhibitor was associated with significantly increased lifespan in both sexes. Torin1 induced a dose-dependent increase in lifespan in once-mated females. There was no evidence of a trade-off between longevity and fecundity or fertility. Torin1-fed females exhibited significantly elevated fecundity, but also elevated egg infertility, resulting in no net change in overall fertility. This supports the idea that lifespan can be extended without trade-offs in fertility and suggest that Torin1 may be a useful tool with which to pursue anti-ageing research

    Characterisation of bioenergetic pathways and related regulators by multiple assays in human tumour cells

    Get PDF
    Background: Alterations in cellular metabolism are considered as hallmarks of cancers, however, to recognize these alterations and understand their mechanisms appropriate techniques are required. Our hypothesis was to determine whether dominant bioenergetic mechanism may be estimated by comparing the substrate utilisation with different methods to detect the labelled carbon incorporation and their application in tumour cells. Methods: To define the bioenergetic pathways different metabolic tests were applied: (a) measuring CO2 production from [1-14C]-glucose and [1-14C]-acetate; (b) studying the effect of glucose and acetate on adenylate energy charge; (c) analysing glycolytic and TCA cycle metabolites and the number of incorporated 13C atoms after [U-13C]-glucose/[2-13C]-acetate labelling. Based on [1-14C]-substrate oxidation two selected cell lines out of seven were analysed in details, in which the highest difference was detected at their substrate utilization. To elucidate the relevance of metabolic characterisation the expression of certain regulatory factors, bioenergetic enzymes, mammalian target of rapamycin (mTOR) complexes (C1/C2) and related targets as important elements at the crossroad of cellular signalling network were also investigated. Results: Both [U-13C]-glucose and [1-14C]-substrate labelling indicated high glycolytic capacity of tumour cells. However, the ratio of certain 13C-labelled metabolites showed detailed metabolic differences in the two selected cell lines in further characterisation. The detected differences of GAPDH, β-F1-ATP-ase expression and adenylate energy charge in HT-1080 and ZR-75.1 tumour cells also confirmed the altered metabolism. Moreover, the highly limited labelling of citrate by [2-13C]-acetate-representing a novel functional test in malignant cells-confirmed the defect of TCA cycle of HT-1080 in contrast to ZR-75.1 cells. Noteworthy, the impaired TCA cycle in HT-1080 cells were associated with high mTORC1 activity, negligible protein level and activity of mTORC2, high expression of interleukin-1β, interleukin-6 and heme oxygenase-1 which may contribute to the compensatory mechanism of TCA deficiency. Conclusions: The applied methods of energy substrate utilisation and other measurements represent simple assay system using 13C-acetate and glucose to recognize dominant bioenergetic pathways in tumour cells. These may offer a possibility to characterise metabolic subtypes of human tumours and provide guidelines to find biomarkers for prediction and development of new metabolism related targets in personalized therapy. © 2016 Jeney et al

    Resveratrol Inhibits Protein Translation in Hepatic Cells

    Get PDF
    Resveratrol is a plant-derived polyphenol that extends lifespan and healthspan in model organism. Despite extensive investigation, the biological processes mediating resveratrol's effects have yet to be elucidated. Because repression of translation shares many of resveratrol's beneficial effects, we hypothesized that resveratrol was a modulator of protein synthesis. We studied the effect of the drug on the H4-II-E rat hepatoma cell line. Initial studies showed that resveratrol inhibited global protein synthesis. Given the role of the mammalian Target of Rapamycin (mTOR) in regulating protein synthesis, we examined the effect of resveratrol on mTOR signaling. Resveratrol inhibited mTOR self-phosphorylation and the phosphorylation of mTOR targets S6K1 and eIF4E-BP1. It attenuated the formation of the translation initiation complex eIF4F and increased the phosphorylation of eIF2α. The latter event, also a mechanism for translation inhibition, was not recapitulated by mTOR inhibitors. The effects on mTOR signaling were independent of effects on AMP-activated kinase or AKT. We conclude that resveratrol is an inhibitor of global protein synthesis, and that this effect is mediated through modulation of mTOR-dependent and independent signaling
    corecore