1,905 research outputs found
Hyperoxia Elevates Adrenic Acid Peroxidation in Marine Fish and Is Associated with Reproductive Pheromone Mediators
published_or_final_versio
Fish oil supplementation in CCl4 injured rodents exclusively suppressed enzymatic and non-enzymatic lipid peroxidation of DHA and EPA
Poster Session 1: abstract no. M4.07The Conference abstracts' website is located at http://www.issfal.org/conferences/2014-stockholm/abstractsFish oil contains high amount of omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and helps in reducing risk of neurodegenerative diseases and coronary heart diseases. Because of the high numbers of double bonds, they are prone to undergo lipid peroxidation in vitro and in vivo. Many of the products generated through this process are claimed either to be bioactive or toxic. We, therefore, investigated the effect of fish oil supplementation with CCl4 liver injured rats. Male Sprague Dawley rats were randomized into five groups: 1) water (Control), 2) canola oil, 3) CCl4, 4) fish oil (omega-3, 350 mg/kg), 5) fish oil + CCl4. Rats were treated ...postprin
Maternal-fetal evaluation of oxidized lipid products of polyunsaturated fatty acid induced by environmental contaminant perfluorooctante sulfonate
Poster Session 3: abstract no. N9.06The Conference abstracts' website is located at http://www.issfal.org/conferences/2014-stockholm/abstractsPerfluorooctane sulfonate (PFOS) is synthetic fluorinated hydrocarbons. However the carbon-fluoride bonds render these compounds to be non-biodegradable, leading to their persistence in the environment and lengthy elimination half-life in vivo. PFOS could also penetrate the placental barrier and the blood brain barrier, and produce neurotoxic effect. High dose of PFOS leads to neonatal mortality and neurologic delays. It is known PFOS generate a dose-dependent ROS production, but the effect in PUFA lipid peroxidation, especially adrenic, arachidonic, docosahexaenoic and eicosapentaenoic acids that are ...postprin
Measuring organisational readiness for patient engagement (MORE) : an international online Delphi consensus study
Date of Acceptance: 28/01/2015. © 2015 Oostendorp et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedWidespread implementation of patient engagement by organisations and clinical teams is not a reality yet. The aim of this study is to develop a measure of organisational readiness for patient engagement designed to monitor and facilitate a healthcare organisation’s willingness and ability to effectively implement patient engagement in healthcarePeer reviewedFinal Published versio
Nonenzymatic lipid mediators, neuroprostanes, exert the antiarrhythmic properties of docosahexaenoic acid
postprin
On supersymmetric quantum mechanics
This paper constitutes a review on N=2 fractional supersymmetric Quantum
Mechanics of order k. The presentation is based on the introduction of a
generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian
can be associated with the algebra W_k. This general Hamiltonian covers various
supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller
system, fractional supersymmetric oscillator of order k, etc.). The case of
ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection
between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric
Quantum Mechanics is briefly described. A realization of the algebra W_k, of
the N=2 supercharges and of the corresponding Hamiltonian is given in terms of
deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of
Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E.
Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200
A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.
Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation
Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus
Coastal lagoons are semi-isolated ecosystems
exposed to wide fluctuations of environmental conditions
and showing habitat fragmentation. These features may
play an important role in separating species into different
populations, even at small spatial scales. In this study, we
evaluate the concordance between mitochondrial (previous
published data) and nuclear data analyzing the genetic
variability of Pomatoschistus marmoratus in five localities,
inside and outside the Mar Menor coastal lagoon (SE
Spain) using eight microsatellites. High genetic diversity
and similar levels of allele richness were observed across
all loci and localities, although significant genic and
genotypic differentiation was found between populations
inside and outside the lagoon. In contrast to the FST values
obtained from previous mitochondrial DNA analyses
(control region), the microsatellite data exhibited significant
differentiation among samples inside the Mar Menor
and between lagoonal and marine samples. This pattern
was corroborated using Cavalli-Sforza genetic distances.
The habitat fragmentation inside the coastal lagoon and
among lagoon and marine localities could be acting as a
barrier to gene flow and contributing to the observed
genetic structure. Our results from generalized additive
models point a significant link between extreme lagoonal
environmental conditions (mainly maximum salinity) and
P. marmoratus genetic composition. Thereby, these environmental
features could be also acting on genetic structure
of coastal lagoon populations of P. marmoratus favoring
their genetic divergence. The mating strategy of P. marmoratus
could be also influencing our results obtained from
mitochondrial and nuclear DNA. Therefore, a special
consideration must be done in the selection of the DNA
markers depending on the reproductive strategy of the
species
Genetic specification of left-right asymmetry in the diaphragm muscles and their motor innervation.
The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left-right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L-R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry
Metabolic investigations prevent liver transplantation in two young children with citrullinemia type I
Acute liver failure may be caused by a variety of disorders including inborn errors of metabolism. In those cases, rapid metabolic investigations and adequate treatment may avoid the need for liver transplantation. We report two patients who presented with acute liver failure and were referred to our center for liver transplantation work-up. Urgent metabolic investigations revealed citrullinemia type I. Treatment for citrullinemia type I avoided the need for liver transplantation. Acute liver failure as a presentation of citrullinemia type I has not previously been reported in young children. Although acute liver failure has occasionally been described in other urea cycle disorders, these disorders may be underestimated as a cause. Timely diagnosis and treatment of these disorders may avoid liver transplantation and improve clinical outcome. Therefore, urea cycle disorders should be included in the differential diagnosis in young children presenting with acute liver failure
- …
