15 research outputs found

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations

    Deleted in maligant brain tumor-1 (DMBT1) in a mouse pneumonia model

    No full text

    Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL

    No full text
    Fos-related antigen 1 (Fra-1) is a Fos family member overexpressed in several types of human cancers. Here, we report that Fra-1 is highly expressed in the muscle-invasive form of the carcinoma of the bladder (80%) and to a lesser extent in superficial bladder cancer (42%). We demonstrate that in this type of cancer Fra-1 is regulated via a C-terminal instability signal and C-terminal phosphorylation. We show that manipulation of Fra-1 expression levels in bladder cancer cell lines affects cell morphology, motility and proliferation. The gene coding for AXL tyrosine kinase is directly upregulated by Fra-1 in bladder cancer and in other cell lines. Importantly, our data demonstrate that AXL mediates the effect of Fra-1 on tumour cell motility but not on cell proliferation. We suggest that AXL may represent an attractive therapeutic target in cancers expressing high Fra-1 level

    A 19S proteasomal subunit cooperates with an ERK MAPK-regulated degron to regulate accumulation of Fra-1 in tumour cells

    No full text
    Fos-related antigen-1 (Fra-1) is a member of the Activator Protein-1 (AP-1) transcription factor superfamily that is overexpressed in a variety of cancers, including colon, breast, lung, bladder and brain. High Fra-1 levels are associated with enhanced cell proliferation, survival, migration and invasion. Despite its frequent overexpression, the molecular mechanisms that regulate the accumulation of Fra-1 proteins in tumour cells are not well understood. Here, we show that turnover of Fra-1, which does not require ubiquitylation, is cooperatively regulated by two distinct mechanisms—association with the 19S proteasomal subunit, TBP-1, and by a C-terminal degron, which acts independently of TBP-1, but is regulated by RAS–ERK (extracellular signal-regulated kinase) signalling. TBP-1 depletion stabilized Fra-1 and further increased its levels in tumour cells expressing RAS–ERK pathway oncogenes. These effects correlated with increased AP-1 transcriptional activity. We suggest that during Fra-1 degradation, association with TBP-1 provides a mechanism for ubiquitin-independent proteasomal recognition, while the C terminus of the protein regulates its subsequent proteolytic processing.This work was supported by grants from the National Health and Medical Research Council of Australia & SFIDeposited by bulk impor
    corecore