39 research outputs found

    Adenosine A2A receptors modulate BDNF both in normal conditions and in experimental models of Huntington’s disease

    Get PDF
    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, enhances synaptic transmission and regulates neuronal proliferation and survival. Functional interactions between adenosine A2A receptors (A2ARs) and BDNF have been recently reported. In this article, we report some recent findings from our group showing that A2ARs regulate both BDNF functions and levels in the brain. Whereas BDNF (10 ng/ml) increased the slope of excitatory postsynaptic field potentials (fEPSPs) in hippocampal slices from wild-type (WT) mice, it was completely ineffective in slices taken from A2AR knock-out (KO) mice. Furthermore, enzyme immunoassay studies showed a significant reduction in hippocampal BDNF levels in A2AR KO vs. WT mice. Having found an even marked reduction in the striatum of A2AR KO mice, and as both BDNF and A2ARs have been implicated in the pathogenesis of Huntington’s disease (HD), an inherited striatal neurodegenerative disease, we then evaluated whether the pharmacological blockade of A2ARs could influence striatal levels of BDNF in an experimental model of HD-like striatal degeneration (quinolinic acid-lesioned rats) and in a transgenic mice model of HD (R6/2 mice). In both QA-lesioned rats and early symptomatic R6/2 mice (8 weeks), the systemic administration of the A2AR antagonist SCH58261 significantly reduced striatal BDNF levels. These results indicate that the presence and the tonic activation of A2ARs are necessary to allow BDNF-induced potentiation of synaptic transmission and to sustain a normal BDNF tone. The possible functional consequences of reducing striatal BDNF levels in HD models need further investigation

    Post translational changes to α-synuclein control iron and dopamine trafficking : a concept for neuron vulnerability in Parkinson's disease

    Get PDF
    Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease

    Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons.

    Get PDF
    An increasing number of studies show that the activation of the innate immune system and inflammatory mechanisms play an important role in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms and its activation occurs in response to pathogens or tissue injury via pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Intracellular pathways, linking immune and inflammatory response to ion channel expression and function, have been recently identified. Among ion channels, the transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes.In this review, we summarize current knowledge of interactions between immune cells and PRRs and ion channels of TRP families with PAMPs and DAMPs to provide new insights into the pathogenesis of inflammatory diseases. TRP channels have been found to interfere with innate immunity via both nuclear factor-kB and procaspase-1 activation to generate the mature caspase-1 that cleaves pro-interleukin-1ß cytokine into the mature interleukin-1ß.Sensory neurons are also adapted to recognize dangers by virtue of their sensitivity to intense mechanical, thermal and irritant chemical stimuli. As immune cells, they possess many of the same molecular recognition pathways for danger. Thus, they express PRRs including Toll-like receptors 3, 4, 7, and 9, and stimulation by Toll-like receptor ligands leads to induction of inward currents and sensitization in TRPs. In addition, the expression of inflammasomes in neurons and the involvement of TRPs in central nervous system diseases strongly support a role of TRPs in inflammasome-mediated neurodegenerative pathologies. This field is still at its beginning and further studies may be required.Overall, these studies highlight the therapeutic potential of targeting the inflammasomes in proinflammatory, autoinflammatory and metabolic disorders associated with undesirable activation of the inflammasome by using specific TRP antagonists, anti-human TRP monoclonal antibody or different molecules able to abrogate the TRP channel-mediated inflammatory signals

    Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons

    Get PDF

    On a new peirosaurid crocodyliform from the Upper Cretaceous, Bauru Group, southeastern Brazil

    No full text
    A new crocodyliform from the Upper Cretaceous (Campanian-Maastrichtian) Presidente Prudente Formation of the Bauru Group is described based on two almost complete skulls and mandibles. The material comes from the "Tartaruguito" site, situated at an old railroad between the cities of Pirapozinho and Presidente Prudente, state of SĂŁo Paulo, Brazil. The new species, Pepesuchus deiseae gen. et sp. nov., is classified in the clade Peirosauridae on the basis of three synapomorphies: the presence of five premaxillary teeth, the anterior two premaxillary alveoli nearly confluent, and the oval cross-section of the jugal along the lower temporal bar. The new taxon increases the outstanding crocodyliform diversity of the Bauru Group, particularly of the Peirosauridae, which might turn out to be one of the most representative clades of gondwanan mesoeucrocodylians.<br>Um novo crocodilomorfo da Formação Presidente Prudente, CretĂĄceo Superior (Campaniano-Maastrichtiano) do Grupo Bauru Ă© descrito com base em dois exemplares, consistindo de crĂąnio e mandĂ­bulas quase completos. O material Ă© procedente da localidade conhecida como "Tartaruguito", situada em um antigo ramal ferroviĂĄrio que ligava as cidades de Pirapozinho e Presidente Prudente, Estado de SĂŁo Paulo, Brasil. A nova espĂ©cie, denominada de Pepesuchus deiseae gen. et sp. nov., Ă© classificada no clado Peirosauridae, com base em trĂȘs sinapomorfias: presença de cinco dentes prĂ©-maxilares, os dois primeiros alvĂ©olos da prĂ©-maxila quase confluentes e a secção transversal do jugal ao longo da barra temporal inferior oval. O novo tĂĄxon aumenta a marcante diversidade de crocodiliformes do Grupo Bauru e dos Peirosauridae, que poderĂĄ vir a ser um dos clados mais representativos de mesoeucrocodilianos gondwĂąnicos
    corecore