216 research outputs found

    6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration

    Get PDF
    Chondroitin sulphate proteoglycans (CSPGs) upregulated in the glial scar inhibit axon regeneration via their sulphated glycosaminoglycans (GAGs). Chondroitin 6-sulphotransferase-1 (C6ST-1) is upregulated after injury leading to an increase in 6-sulphated GAG. In this study, we ask if this increase in 6-sulphated GAG is responsible for the increased inhibition within the glial scar, or whether it represents a partial reversion to the permissive embryonic state dominated by 6-sulphated glycosaminoglycans (GAGs). Using C6ST-1 knockout mice (KO), we studied post-injury changes in chondroitin sulphotransferase (CSST) expression and the effect of chondroitin 6-sulphates on both central and peripheral axon regeneration. After CNS injury, wild-type animals (WT) showed an increase in mRNA for C6ST-1, C6ST-2 and C4ST-1, but KO did not upregulate any CSSTs. After PNS injury, while WT upregulated C6ST-1, KO showed an upregulation of C6ST-2. We examined regeneration of nigrostriatal axons, which demonstrate mild spontaneous axon regeneration in the WT. KO showed many fewer regenerating axons and more axonal retraction than WT. However, in the PNS, repair of the median and ulnar nerves led to similar and normal levels of axon regeneration in both WT and KO. Functional tests on plasticity after the repair also showed no evidence of enhanced plasticity in the KO. Our results suggest that the upregulation of 6-sulphated GAG after injury makes the extracellular matrix more permissive for axon regeneration, and that the balance of different CSs in the microenvironment around the lesion site is an important factor in determining the outcome of nervous system injury

    Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity

    Get PDF
    There are over 6 billion vaccine doses administered each year, most containing aluminium-based adjuvants, yet we still do not have a complete understanding of their mechanisms of action. Recent evidence has identified host DNA and downstream sensing as playing a significant role in aluminium adjuvant (aluminium hydroxide) activity. However, the cellular source of this DNA, how it is sensed by the immune system and the consequences of this for vaccination remains unclear. Here we show that the very early injection site reaction is characterised by inflammatory chemokine production and neutrophil recruitment. Intravital imaging demonstrates that the Alum injection site is a focus of neutrophil swarms and extracellular DNA strands. These strands were confirmed as neutrophil extracellular traps due to their sensitivity to DNAse and absence in mice deficient in peptidylarginine deiminase 4. Further studies in PAD4−/− mice confirmed a significant role for neutrophil extracellular trap formation in the adjuvant activity of Alum. By revealing neutrophils recruited to the site of Alum injection as a source of the DNA that is detected by the immune system this study provides the missing link between Alum injection and the activation of DNA sensors that enhance adjuvant activity, elucidating a key mechanism of action for this important vaccine component

    Growing pains in children

    Get PDF
    We review the clinical manifestations of "growing pains", the most common form of episodic childhood musculoskeletal pain. Physicians should be careful to adhere to clear clinical criteria as described in this review before diagnosing a child with growing pain. We expand on current theories on possible causes of growing pains and describe the management of these pains and the generally good outcome in nearly all children

    Androgen Receptor Drives Cellular Senescence

    Get PDF
    The accepted androgen receptor (AR) role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS) and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor

    Early Diagnosis, Treatment and Follow-Up of Cystic Echinococcosis in Remote Rural Areas in Patagonia: Impact of Ultrasound Training of Non-Specialists

    Get PDF
    Cystic echinococcosis (CE) is an important and widespread disease that affects sheep, cattle, and humans living in areas where sheep and cattle are raised. CE is highly endemic in rural sections of Rio Negro, Argentina, where our group is based. However, it requires continuous monitoring of both populations with human disease best assessed by means of ultrasound (US) screening. This is challenging in remote rural areas due to the shortage of imaging specialists. To overcome this hurdle, we set up a two-day training program of Focused Assessment with Sonography for Echinococcosis (FASE) on CE for family medicine practitioners with no previous experience in US. After the course, they were equipped with portable US scanners and dispatched to remote rural areas in Rio Negro where they screened patients, located and staged the cysts and decided on the treatment with the help of surgeons and radiologists in local tertiary care centers

    Promoting Patient Safety and Preventing Medical Error in Emergency Departments

    Full text link
    An estimated 108,000 people die each year from potentially preventable iatrogenic injury. One in 50 hospitalized patients experiences a preventable adverse event. Up to 3% of these injuries and events take place in emergency departments. With long and detailed training, morbidity and mortality conferences, and an emphasis on practitioner responsibility, medicine has traditionally faced the challenges of medical error and patient safety through an approach focused almost exclusively on individual practitioners. Yet no matter how well trained and how careful health care providers are, individuals will make mistakes because they are human. In general medicine, the study of adverse drug events has led the way to new methods of error detection and error prevention. A combination of chart reviews, incident logs, observation, and peer solicitation has provided a quantitative tool to demonstrate the effectiveness of interventions such as computer order entry and pharmacist order review. In emergency medicine (EM), error detection has focused on subjects of high liability: missed myocardial infarctions, missed appendicitis, and misreading of radiographs. Some system-level efforts in error prevention have focused on teamwork, on strengthening communication between pharmacists and emergency physicians, on automating drug dosing and distribution, and on rationalizing shifts. This article reviews the definitions, detection, and presentation of error in medicine and EM. Based on review of the current literature, recommendations are offered to enhance the likelihood of reduction of error in EM practice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74930/1/j.1553-2712.2000.tb00466.x.pd

    Matrix Development in Self-Assembly of Articular Cartilage

    Get PDF
    Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG) content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days) were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan). Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is suggested that exogenous stimulation may be necessary after 4 wks to further augment the functionality of developing constructs

    The macrophage at the intersection of immunity and metabolism in obesity

    Get PDF
    Obesity is a worldwide pandemic representing one of the major challenges that societies face around the globe. Identifying the mechanisms involved in its development and propagation will help the development of preventative and therapeutic strategies that may help control its rising rates
    corecore