427 research outputs found

    Optimum spectral window for imaging of art with optical coherence tomography

    Get PDF
    Optical Coherence Tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artists’ paints. VIS-NIR (400 nm – 2400 nm) reflectance spectra of a wide variety of paints made with historic artists’ pigments have been measured. The best spectral window with which to use optical coherence tomography (OCT) for the imaging of subsurface structure of paintings was found to be around 2.2 μm. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artists’ pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 microns are highly desirable for OCT applications in art and potentially material science in general

    Pathologies in Asymptotically Lifshitz Spacetimes

    Full text link
    There has been significant interest in the last several years in studying possible gravitational duals, known as Lifshitz spacetimes, to anisotropically scaling field theories by adding matter to distort the asymptotics of an AdS spacetime. We point out that putative ground state for the most heavily studied example of such a spacetime, that with a flat spatial section, suffers from a naked singularity and further point out this singularity is not resolvable by any known stringy effect. We review the reasons one might worry that asymptotically Lifshitz spacetimes are unstable and employ the initial data problem to study the stability of such systems. Rather surprisingly this question, and even the initial value problem itself, for these spacetimes turns out to generically not be well-posed. A generic normalizable state will evolve in such a way to violate Lifshitz asymptotics in finite time. Conversely, enforcing the desired asymptotics at all times puts strong restrictions not just on the metric and fields in the asymptotic region but in the deep interior as well. Generically, even perturbations of the matter field of compact support are not compatible with the desired asymptotics.Comment: 36 pages, 1 figure, v2: Enhanced discussion of singularity, including relationship to Gubser's conjecture and singularity in RG flow solution, plus minor clarification

    Chern-Simons black holes: scalar perturbations, mass and area spectrum and greybody factors

    Full text link
    We study the Chern-Simons black holes in d-dimensions and we calculate analytically the quasi-normal modes of the scalar perturbations and we show that they depend on the highest power of curvature present in the Chern-Simons theory. We obtain the mass and area spectrum of these black holes and we show that they have a strong dependence on the topology of the transverse space and they are not evenly spaced. We also calculate analytically the reflection and transmission coefficients and the absorption cross section and we show that at low frequency limit there is a range of modes which contributes to the absorption cross section.Comment: 19 pages, 18 figures, the title has been changed to reflect the addition of an another section on the reflection, transmission coefficients and absorption cross sections of the Chern-Simons black holes. Version to be published in JHE

    Isolated and dynamical horizons and their applications

    Get PDF
    Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner. In this framework, evolving black holes are modeled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity; suggested a phenomenological model for hairy black holes; provided novel techniques to extract physics from numerical simulations; and led to new laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte

    Critical Trapped Surfaces Formation in the Collision of Ultrarelativistic Charges in (A)dS

    Full text link
    We study the formation of marginally trapped surfaces in the head-on collision of two ultrarelativistic charges in (A)dS(A)dS space-time. The metric of ultrarelativistic charged particles in (A)dS(A)dS is obtained by boosting Reissner-Nordstr\"om (A)dS(A)dS space-time to the speed of light. We show that formation of trapped surfaces on the past light cone is only possible when charge is below certain critical - situation similar to the collision of two ultrarelativistic charges in Minkowski space-time. This critical value depends on the energy of colliding particles and the value of a cosmological constant. There is richer structure of critical domains in dSdS case. In this case already for chargeless particles there is a critical value of the cosmological constant only below which trapped surfaces formation is possible. Appearance of arbitrary small nonzero charge significantly changes the physical picture. Critical effect which has been observed in the neutral case does not take place more. If the value of the charge is not very large solution to the equation on trapped surface exists for any values of cosmological radius and energy density of shock waves. Increasing of the charge leads to decrease of the trapped surface area, and at some critical point the formation of trapped surfaces of the type mentioned above becomes impossible.Comment: 30 pages, Latex, 7 figures, Refs. added and typos correcte

    Adipose Tissue Serves as a Reservoir for Recrudescent Rickettsia prowazekii Infection in a Mouse Model

    Get PDF
    Brill-Zinsser disease, the relapsing form of epidemic typhus, typically occurs in a susceptible host years or decades after the primary infection; however, the mechanisms of reactivation and the cellular reservoir during latency are poorly understood. Herein we describe a murine model for Brill-Zinsser disease, and use PCR and cell culture to show transient rickettsemia in mice treated with dexamethasone >3 months after clinical recovery from the primary infection. Treatment of similarly infected mice with cyclosporine failed to produce recrudescent bacteremia. Therapy with doxycycline for the primary infection prevented recrudescent bacteremia in most of these mice following treatment with dexamethasone. Rickettsia prowazekii (the etiologic agent of epidemic typhus) was detected by PCR, cell culture, and immunostaining methods in murine adipose tissue, but not in liver, spleen, lung, or central nervous system tissues of mice 4 months after recovery from the primary infection. The lungs of dexamethasone-treated mice showed impaired expression of β-defensin transcripts that may be involved in the pathogenesis of pulmonary lesions. In vitro, R. prowazekii rickettsiae infected and replicated in the murine adipocyte cell line 3T3-L1. Collectively these data suggest a role for adipose tissue as a potential reservoir for dormant infections with R. prowazekii

    Dispersal Routes and Habitat Utilization of Juvenile Atlantic Bluefin Tuna, Thunnus thynnus, Tracked with Mini PSAT and Archival Tags

    Get PDF
    Between 2005 and 2009, we deployed 58 miniature pop-up satellite archival tags (PSAT) and 132 implanted archival tags on juvenile Atlantic bluefin tuna (age 2–5) in the northwest Atlantic Ocean. Data returned from these efforts (n = 26 PSATs, 1 archival tag) revealed their dispersal routes, horizontal and vertical movements and habitat utilization. All of the tagged bluefin tuna remained in the northwest Atlantic for the duration observed, and in summer months exhibited core-use of coastal seas extending from Maryland to Cape Cod, MA, (USA) out to the shelf break. Their winter distributions were more spatially disaggregated, ranging south to the South Atlantic Bight, northern Bahamas and Gulf Stream. Vertical habitat patterns showed that juvenile bluefin tuna mainly occupied shallow depths (mean  = 5–12 m, sd  = 15–23.7 m) and relatively warm water masses in summer (mean  = 17.9–20.9°C, sd  = 4.2–2.6°C) and had deeper and more variable depth patterns in winter (mean  = 41–58 m, sd  = 48.9–62.2 m). Our tagging results reveal annual dispersal patterns, behavior and oceanographic associations of juvenile Atlantic bluefin tuna that were only surmised in earlier studies. Fishery independent profiling from electronic tagging also provide spatially and temporally explicit information for evaluating dispersals rates, population structure and fisheries catch patterns

    A new method for determining physician decision thresholds using empiric, uncertain recommendations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The concept of risk thresholds has been studied in medical decision making for over 30 years. During that time, physicians have been shown to be poor at estimating the probabilities required to use this method. To better assess physician risk thresholds and to more closely model medical decision making, we set out to design and test a method that derives thresholds from actual physician treatment recommendations. Such an approach would avoid the need to ask physicians for estimates of patient risk when trying to determine individual thresholds for treatment. Assessments of physician decision making are increasingly relevant as new data are generated from clinical research. For example, recommendations made in the setting of ocular hypertension are of interest as a large clinical trial has identified new risk factors that should be considered by physicians. Precisely how physicians use this new information when making treatment recommendations has not yet been determined.</p> <p>Results</p> <p>We derived a new method for estimating treatment thresholds using ordinal logistic regression and tested it by asking ophthalmologists to review cases of ocular hypertension before expressing how likely they would be to recommend treatment. Fifty-eight physicians were recruited from the American Glaucoma Society. Demographic information was collected from the participating physicians and the treatment threshold for each physician was estimated. The method was validated by showing that while treatment thresholds varied over a wide range, the most common values were consistent with the 10-15% 5-year risk of glaucoma suggested by expert opinion and decision analysis.</p> <p>Conclusions</p> <p>This method has advantages over prior means of assessing treatment thresholds. It does not require physicians to explicitly estimate patient risk and it allows for uncertainty in the recommendations. These advantages will make it possible to use this method when assessing interventions intended to alter clinical decision making.</p

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    AP2γ controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior

    Get PDF
    Hippocampal neurogenesis has been proposed to participate in a myriad of behavioral responses, both in basal states and in the context of neuropsychiatric disorders. Here, we identify activating protein 2γ 3 (AP2γ 3, also known as Tcfap2c), originally described to regulate the generation of neurons in the developing cortex, as a modulator of adult hippocampal glutamatergic neurogenesis in mice. Specifically, AP2γ 3 is present in a sub-population of hippocampal transient amplifying progenitors. There, it is found to act as a positive regulator of the cell fate determinants Tbr2 and NeuroD, promoting proliferation and differentiation of new glutamatergic granular neurons. Conditional ablation of AP2γ 3 in the adult brain significantly reduced hippocampal neurogenesis and disrupted neural coherence between the ventral hippocampus and the medial prefrontal cortex. Furthermore, it resulted in the precipitation of multimodal cognitive deficits. This indicates that the sub-population of AP2γ 3-positive hippocampal progenitors may constitute an important cellular substrate for hippocampal-dependent cognitive functions. Concurrently, AP2γ 3 deletion produced significant impairments in contextual memory and reversal learning. More so, in a water maze reference memory task a delay in the transition to cognitive strategies relying on hippocampal function integrity was observed. Interestingly, anxiety- and d epressive-like behaviors were not significantly affected. Altogether, findings open new perspectives in understanding the role of specific sub-populations of newborn neurons in the (patho)physiology of neuropsychiatric disorders affecting hippocampal neuroplasticity and cognitive function in the adult brain.We acknowledge the excellent technical expertise of Luís Martins and Andrea Steiner-Mezzadri. We would also like to acknowledge Magdalena Götz for the insightful comments on the paper. AMP, PP, ARS, JS, VMS, NDA and JFO received fellowships from the Portuguese Foundation for Science and Technology (FCT). LP received fellowship from FCT and her work is funded by FCT (IF/01079/2014) and Bial Foundation (427/14) projects. This work was cofunded by the Life and Health Sciences Research Institute (ICVS), and Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (projects NORTE-01-0145- FEDER-000013 and NORTE-01-0145-FEDER-000023). This work has been also funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the FCT, under the scope of the project POCI-01-0145-FEDER-007038info:eu-repo/semantics/publishedVersio
    corecore