48 research outputs found
Improvement in the Reproducibility and Accuracy of DNA Microarray Quantification by Optimizing Hybridization Conditions
BACKGROUND: DNA microarrays, which have been increasingly used to monitor mRNA transcripts at a global level, can provide detailed insight into cellular processes involved in response to drugs and toxins. This is leading to new understandings of signaling networks that operate in the cell, and the molecular basis of diseases. Custom printed oligonucleotide arrays have proven to be an effective way to facilitate the applications of DNA microarray technology. A successful microarray experiment, however, involves many steps: well-designed oligonucleotide probes, printing, RNA extraction and labeling, hybridization, and imaging. Optimization is essential to generate reliable microarray data. RESULTS: Hybridization and washing steps are crucial for a successful microarray experiment. By following the hybridization and washing conditions recommended by an oligonucleotide provider, it was found that the expression ratios were compressed greater than expected and data analysis revealed a high degree of non-specific binding. A series of experiments was conducted using rat mixed tissue RNA reference material (MTRRM) and other RNA samples to optimize the hybridization and washing conditions. The optimized hybridization and washing conditions greatly reduced the non-specific binding and improved the accuracy of spot intensity measurements. CONCLUSION: The results from the optimized hybridization and washing conditions greatly improved the reproducibility and accuracy of expression ratios. These experiments also suggested the importance of probe designs using better bioinformatics approaches and the need for common reference RNA samples for platform performance evaluation in order to fulfill the potential of DNA microarray technology
Genomic analysis of microRNA time-course expression in liver of mice treated with genotoxic carcinogen N-ethyl-N-nitrosourea
<p>Abstract</p> <p>Background</p> <p>Dysregulated expression of microRNAs (miRNAs) has been previously observed in human cancer tissues and shown promise in defining tumor status. However, there is little information as to if or when expression changes of miRNAs occur in normal tissues after carcinogen exposure.</p> <p>Results</p> <p>To explore the possible time-course changes of miRNA expression induced by a carcinogen, we treated mice with one dose of 120 mg/kg <it>N</it>-ethyl-<it>N</it>-nitrosourea (ENU), a model genotoxic carcinogen, and vehicle control. The miRNA expression profiles were assessed in the mouse livers in a time-course design. miRNAs were isolated from the livers at days 1, 3, 7, 15, 30 and 120 after the treatment and their expression was determined using a miRNA PCR Array. Principal component analysis of the miRNA expression profiles showed that miRNA expression at post-treatment days (PTDs) 7 and 15 were different from those at the other time points and the control. The number of differentially expressed miRNAs (DEMs) changed over time (3, 5, 14, 32, 5 and 5 at PTDs 1, 3, 7, 15, 30 and 120, respectively). The magnitude of the expression change varied with time with the highest changes at PTDs 7 or 15 for most of the DEMs. In silico functional analysis of the DEMs at PTDs 7 and 15 indicated that the major functions of these ENU-induced DEMs were associated with DNA damage, DNA repair, apoptosis and other processes related to carcinogenesis.</p> <p>Conclusion</p> <p>Our results showed that many miRNAs changed their expression to respond the exposure of the genotoxic carcinogen ENU and the number and magnitude of the changes were highest at PTDs 7 to 15. Thus, one to two weeks after the exposure is the best time for miRNA expression sampling.</p
Acanthaster planci Outbreak: Decline in Coral Health, Coral Size Structure Modification and Consequences for Obligate Decapod Assemblages
Although benthic motile invertebrate communities encompass the vast majority of coral reef diversity, their response to habitat modification has been poorly studied. A variety of benthic species, particularly decapods, provide benefits to their coral host enabling them to cope with environmental stressors, and as a result benefit the overall diversity of coral-associated species. However, little is known about how invertebrate assemblages associated with corals will be affected by global perturbations, (either directly or indirectly via their coral host) or their consequences for ecosystem resilience. Analysis of a ten year dataset reveals that the greatest perturbation at Moorea over this time was an outbreak of the corallivorous sea star Acanthaster planci from 2006 to 2009 impacting habitat health, availability and size structure of Pocillopora spp. populations and highlights a positive relationship between coral head size and survival. We then present the results of a mensurative study in 2009 conducted at the end of the perturbation (A. planci outbreak) describing how coral-decapod communities change with percent coral mortality for a selected coral species, Pocillopora eydouxi. The loss of coral tissue as a consequence of A. planci consumption led to an increase in rarefied total species diversity, but caused drastic modifications in community composition driven by a shift from coral obligate to non-obligate decapod species. Our study highlights that larger corals left with live tissue in 2009, formed a restricted habitat where coral obligate decapods, including mutualists, could subsist. We conclude that the size structure of Pocillopora populations at the time of an A. planci outbreak may greatly condition the magnitude of coral mortality as well as the persistence of local populations of obligate decapods
Identifying Fishes through DNA Barcodes and Microarrays
Background: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of ‘‘DNA barcoding’’ and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the ‘‘position of label’’ effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (.90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products
Expression of Tas1 Taste Receptors in Mammalian Spermatozoa: Functional Role of Tas1r1 in Regulating Basal Ca2+ and cAMP Concentrations in Spermatozoa
Background: During their transit through the female genital tract, sperm have to recognize and discriminate numerous chemical compounds. However, our current knowledge of the molecular identity of appropriate chemosensory receptor proteins in sperm is still rudimentary. Considering that members of the Tas1r family of taste receptors are able to discriminate between a broad diversity of hydrophilic chemosensory substances, the expression of taste receptors in mammalian spermatozoa was examined.
Methodology/Principal Findings:
The present manuscript documents that Tas1r1 and Tas1r3, which form the functional receptor for monosodium glutamate (umami) in taste buds on the tongue, are expressed in murine and human spermatozoa, where their localization is restricted to distinct segments of the flagellum and the acrosomal cap of the sperm head. Employing a Tas1r1-deficient mCherry reporter mouse strain, we found that Tas1r1 gene deletion resulted in spermatogenic abnormalities. In addition, a significant increase in spontaneous acrosomal reaction was observed in Tas1r1 null mutant sperm whereas acrosomal secretion triggered by isolated zona pellucida or the Ca2+ ionophore A23187 was not different from wild-type spermatozoa. Remarkably, cytosolic Ca2+ levels in freshly isolated Tas1r1-deficient sperm were significantly higher compared to wild-type cells. Moreover, a significantly higher basal cAMP concentration was detected in freshly isolated Tas1r1-deficient epididymal spermatozoa, whereas upon inhibition of phosphodiesterase or sperm capacitation, the amount of cAMP was not different between both genotypes.
Conclusions/Significance:
Since Ca2+ and cAMP control fundamental processes during the sequential process of fertilization, we propose that the identified taste receptors and coupled signaling cascades keep sperm in a chronically quiescent state until they arrive in the vicinity of the egg - either by constitutive receptor activity and/or by tonic receptor activation by gradients of diverse chemical compounds in different compartments of the female reproductive tract
A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.
This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H
Implementing a video-based intervention to empower staff members in an autism care organization: a qualitative study
Background Implementing good-quality health and social care requires empowerment of staff members within organizations delivering care. Video Interaction Guidance (VIG) is an intervention using positive video feedback to empower staff through reflection on practice. This qualitative study explored the implementation of VIG within an autism care organization in England, from the perspective of staff members undergoing training to deliver VIG. Methods Semi-structured interviews were conducted with a purposive sample of 7 participants working within the organization (5 staff undergoing training to deliver VIG; 2 senior managers influencing co-ordination of training). Participants were asked about their views of VIG and its implementation. The topic guide was informed by Normalization Process Theory (NPT). Data were analysed inductively and emerging issues were related to NPT. Results Five broad themes were identified: (1) participants reported that they and other staff did not understand VIG until they became involved, initially believing it would highlight negative rather than positive practice; (2) enthusiastic feedback from staff who had been involved seemed to encourage other staff to become involved; (3) key implementation challenges included demands of daily work and securing managers’ support; (4) ideas for future practice arising from empowerment through VIG seemed difficult to realise within an organizational culture reportedly unreceptive to creative ideas from staff; (5) individuals’ emotional responses to implementation seemed beyond the reach of NPT, which focused more upon collective processes. Conclusions Implementation of VIG may require recognition that it is not a ‘quick fix’. Peer advocacy may be a fruitful implementation strategy. Senior managers may need to experience VIG to develop their understanding so that they can provide appropriate implementation support. NPT may lack specificity to explain how individual agency weaves with collective processes and social systems to embed innovation in routine practice. This exploratory study has provided broad insights into facilitators and barriers to the implementation of an intervention to empower staff within an autism care organization. Further research is needed into similar interventions, including a focus upon staff members’ emotional responses and resources, and how such interventions may relate to the culture of the organization in which implementation occurs