1,556 research outputs found
Helminth species richness in wild wood mice, Apodemus sylvaticus, is enhanced by the presence of the intestinal nematode Heligmosomoides polygyrus
We analysed 3 independently collected datasets of fully censused helminth burdens in wood mice, Apodemus sylvaticus,
testing the a priori hypothesis of Behnke et al. (2005) that the presence of the intestinal nematode Heligmosomoides polygyrus
predisposes wood mice to carrying other species of helminths. In Portugal, mice carrying H. polygyrus showed a higher
prevalence of other helminths but the magnitude of the effect was seasonal. In Egham, mice with H. polygyrus showed a
higher prevalence of other helminth species, not confounded by other factors. In Malham Tarn, mice carrying H. polygyrus
were more likely to be infected with other species, but only among older mice. Allowing for other factors, heavy residual
H. polygyrus infections carried more species of other helminths in both the Portugal and Egham data; species richness in
Malham was too low to conduct a similar analysis, but as H. polygyrus worm burdens increased, so the prevalence of other
helminths also increased. Our results support those of Behnke et al. (2005), providing firm evidence that at the level
of species richness a highly predictable element of co-infections in wood mice has now been defined: infection with
H. polygyrus has detectable consequences for the susceptibility of wood mice to other intestinal helminth species
Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of bank voles (Myodes glareolus) in NE Poland
Parasites are considered to be an important selective force in host evolution but ecological studies of host-parasite systems are usually short-term providing only snap-shots of what may be dynamic systems. We have conducted four surveys of helminths of bank voles at three ecologically similar woodland sites in NE Poland, spaced over a period of 11 years, to assess the relative importance of temporal and spatial effects on helminth infracommunities. Some measures of infracom- munity structure maintained relative stability: the rank order of prevalence and abundance of Heligmosomum mixtum, Heligmosomoides glareoli and Mastophorus muris changed little between the four surveys. Other measures changed markedly: dynamic changes were evident in Syphacia petrusewiczi which declined to local extinction, while the capillariid Aonchotheca annulosa first appeared in 2002 and then increased in prevalence and abundance over the remaining three surveys. Some species are therefore dynamic and both introductions and extinctions can be expected in ecological time. At higher taxonomic levels and for derived measures, year and host-age effects and their interactions with site are import- ant. Our surveys emphasize that the site of capture is the major determinant of the species contributing to helminth community structure, providing some predictability in these systems
Insights into the Complex Associations Between MHC Class II DRB Polymorphism and Multiple Gastrointestinal Parasite Infestations in the Striped Mouse
Differences in host susceptibility to different parasite types are largely based on the degree of matching between immune genes and parasite antigens. Specifically the variable genes of the major histocompatibility complex (MHC) play a major role in the defence of parasites. However, underlying genetic mechanisms in wild populations are still not well understood because there is a lack of studies which deal with multiple parasite infections and their competition within. To gain insights into these complex associations, we implemented the full record of gastrointestinal nematodes from 439 genotyped individuals of the striped mouse, Rhabdomys pumilio. We used two different multivariate approaches to test for associations between MHC class II DRB genotype and multiple nematodes with regard to the main pathogen-driven selection hypotheses maintaining MHC diversity and parasite species-specific co-evolutionary effects. The former includes investigations of a ‘heterozygote advantage’, or its specific form a ‘divergent-allele advantage’ caused by highly dissimilar alleles as well as possible effects of specific MHC-alleles selected by a ‘rare allele advantage’ ( = negative ‘frequency-dependent selection’). A combination of generalized linear mixed models (GLMMs) and co-inertia (COIA) analyses made it possible to consider multiple parasite species despite the risk of type I errors on the population and on the individual level. We could not find any evidence for a ‘heterozygote’ advantage but support for ‘divergent-allele’ advantage and infection intensity. In addition, both approaches demonstrated high concordance of positive as well as negative associations between specific MHC alleles and certain parasite species. Furthermore, certain MHC alleles were associated with more than one parasite species, suggesting a many-to-many gene-parasite co-evolution. The most frequent allele Rhpu-DRB*38 revealed a pleiotropic effect, involving three nematode species. Our study demonstrates the co-existence of specialist and generalist MHC alleles in terms of parasite detection which may be an important feature in the maintenance of MHC polymorphism
The unique resistance and resilience of the Nigerian West African Dwarf goat to gastrointestinal nematode infections
<p>Abstract</p> <p>Background</p> <p>West African Dwarf (WAD) goats serve an important role in the rural village economy of West Africa, especially among small-holder livestock owners. They have been shown to be trypanotolerant and to resist infections with <it>Haemonchus contortus </it>more effectively than any other known breed of goat.</p> <p>Methods</p> <p>In this paper we review what is known about the origins of this goat breed, explain its economic importance in rural West Africa and review the current status of our knowledge about its ability to resist parasitic infections.</p> <p>Conclusions</p> <p>We suggest that its unique capacity to show both trypanotolerance and resistance to gastrointestinal (GI) nematode infections is immunologically based and genetically endowed, and that knowledge of the underlying genes could be exploited to improve the capacity of more productive wool and milk producing, but GI nematode susceptible, breeds of goats to resist infection, without recourse to anthelmintics. Either conventional breeding allowing introgression of resistance alleles into susceptible breeds, or transgenesis could be exploited for this purpose. Appropriate legal protection of the resistance alleles of WAD goats might provide a much needed source of revenue for the countries in West Africa where the WAD goats exist and where currently living standards among rural populations are among the lowest in the world.</p
Bacillus thuringiensis Cry5B Protein Is Highly Efficacious as a Single-Dose Therapy against an Intestinal Roundworm Infection in Mice
Intestinal parasitic nematode diseases infect over one billion people and cause significant disease burden in children (growth and cognitive stunting, malnutrition), in pregnant women, and via their dampening of the immune system in infected individuals. In over thirty years, no new classes of anti-roundworm drugs (anthelmintics) for treating humans have been developed. Because of limitations of the current drugs and the threat of parasite resistance, new anthelmintics are needed. The soil bacterium Bacillus thuringiensis (Bt) produces crystal (Cry) proteins that specifically target and kill insects and nematodes and is used around the world as a safe insecticide. Here we test the effects of the Bt Cry protein Cry5B on a chronic, natural intestinal roundworm infection in mice, namely the helminth parasite Heligmosomoides bakeri. We find that a single dose of Cry5B can eliminate 70% of the parasites and can almost completely block the ability of the parasites to produce progeny. Comparisons of Cry5B's efficacy with known anthelmintics suggest its activity is as good as or perhaps even better than those currently used. Furthermore, this protein is rapidly digested by simulated stomach juices, suggesting that protecting it from these juices would reveal a superior anthelmintic
True versus False Parasite Interactions: A Robust Method to Take Risk Factors into Account and Its Application to Feline Viruses
International audienceBACKGROUND: Multiple infections are common in natural host populations and interspecific parasite interactions are therefore likely within a host individual. As they may seriously impact the circulation of certain parasites and the emergence and management of infectious diseases, their study is essential. In the field, detecting parasite interactions is rendered difficult by the fact that a large number of co-infected individuals may also be observed when two parasites share common risk factors. To correct for these "false interactions", methods accounting for parasite risk factors must be used. METHODOLOGY/PRINCIPAL FINDINGS: In the present paper we propose such a method for presence-absence data (i.e., serology). Our method enables the calculation of the expected frequencies of single and double infected individuals under the independence hypothesis, before comparing them to the observed ones using the chi-square statistic. The method is termed "the corrected chi-square." Its robustness was compared to a pre-existing method based on logistic regression and the corrected chi-square proved to be much more robust for small sample sizes. Since the logistic regression approach is easier to implement, we propose as a rule of thumb to use the latter when the ratio between the sample size and the number of parameters is above ten. Applied to serological data for four viruses infecting cats, the approach revealed pairwise interactions between the Feline Herpesvirus, Parvovirus and Calicivirus, whereas the infection by FIV, the feline equivalent of HIV, did not modify the risk of infection by any of these viruses. CONCLUSIONS/SIGNIFICANCE: This work therefore points out possible interactions that can be further investigated in experimental conditions and, by providing a user-friendly R program and a tutorial example, offers new opportunities for animal and human epidemiologists to detect interactions of interest in the field, a crucial step in the challenge of multiple infections
Necator americanus and Helminth Co-Infections: Further Down-Modulation of Hookworm-Specific Type 1 Immune Responses
Parasitic infections in humans are common in tropical regions and under bad housing and sanitation conditions multiple parasitic infections are the rule rather than the exception. For helminth infections, which are thought to affect almost a quarter of the world's population, most common combinations include soil-transmitted helminths, such as hookworm, roundworm, and whipworm, as well as extra-intestinal infections by schistosomes. In order to develop and test a hookworm vaccine in endemic areas, the understanding of the impact of multiple helminth infections (co-infection) on the immune response against hookworm in infected individuals is crucial. The authors report in their article, that several parameters of the cellular (T cell markers, cytokines, chemokines) and humoral immune response (e.g. IgG4 and IgE antibodies) against hookworm are significantly affected or modulated in individuals co-infected with hookworm, roundworm and/or schistosomes. These results imply that the immune response against components of a hookworm vaccine might be altered by previous contact with other helminth species in endemic areas
Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii
Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion
- …