2,444 research outputs found

    Dynamic variation of CD5 surface expression levels within individual chronic lymphocytic leukemia clones.

    Get PDF
    Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of clonally derived mature CD5high BĀ cells; however, the cellular origin of CLL is still unknown. Patients with CLL also harbor variable numbers of CD5low BĀ cells, but the clonal relationship of these cells to the bulk disease is unknown and can have important implications for monitoring, treating, and understanding the biology of CLL. Here, we use B-cell receptors (BCRs) as molecular barcodes to first show by single-cell BCR sequencing that the great majority of CD5low BĀ cells in the blood of CLL patients are clonally related to CD5high CLL BĀ cells. We investigate whether CD5 state switching was likely to occur continuously as a common event or as a rare event in CLL by tracking somatic BCR mutations in bulk CLL BĀ cells and using them to reconstruct the phylogenetic relationships and evolutionary history of the CLL in four patients. Using statistical methods, we show that there is no parsimonious route from a single or low number of CD5low switch events to the CD5high population, but rather, large-scale and/or dynamic switching between these CD5 states is the most likely explanation. The overlapping BCR repertoires between CD5high and CD5low cells from CLL patient peripheral blood reveal that CLL exists in a continuum of CD5 expression. The major proportion of CD5low BĀ cells in patients are leukemic, thus identifying CD5low BĀ cells as an important component of CLL, with implications for CLL pathogenesis, clinical monitoring, and the development of anti-CD5-directed therapies

    A timeband framework for modelling real-time systems

    Get PDF
    Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper

    Schizophrenia in males of cognitive performance: discriminative and diagnostic values

    Full text link
    OBJECTIVE: To evaluate the discriminative and diagnostic values of neuropsychological tests for identifying schizophrenia patients. METHODS: A cross-sectional study with 36 male schizophrenia outpatients and 72 healthy matched volunteers was carried out. Participants underwent the following neuropsychological tests: Wisconsin Card Sorting test, Verbal Fluency, Stroop test, Mini Mental State Examination, and Spatial Recognition Span. Sensitivity and specificity estimated the diagnostic value of tests with cutoffs obtained using Receiver Operating Characteristic curves. The latent class model (diagnosis of schizophrenia) was used as gold standard. RESULTS: Although patients presented lower scores in most tests, the highest canonical function for the discriminant analysis was 0.57 (Verbal Fluency M). The best sensitivity and specificity were obtained in the Verbal Fluency M test (75 and 65, respectively). CONCLUSIONS: The neuropsychological tests showed moderate diagnostic value for the identification of schizophrenia patients. These findings suggested that the cognitive impairment measured by these tests might not be homogeneous among schizophrenia patients

    Locomotor hyperactivity in 14-3-3Zeta KO mice is associated with dopamine transporter dysfunction

    Get PDF
    Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric disorders. We recently identified 14-3-3Ī¶ as an essential component of neurodevelopment and a central risk factor in the schizophrenia protein interaction network. Our analysis of 14-3-3Ī¶-deficient mice now shows that baseline hyperactivity of knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3Ī¶ KO mice displayed enhanced locomotor hyperactivity induced by the DA releaser amphetamine. Consistent with 14-3-3Ī¶ having a role in DA signalling, we found increased levels of DA in the striatum of 14-3-3Ī¶ KO mice. Although 14-3-3Ī¶ is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme, tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3Ī¶ KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein levels of DA receptors D1ā€“D5. Providing insight into the mechanisms by which 14-3-3Ī¶ controls DAT stability, we found a physical association between 14-3-3Ī¶ and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3Ī¶ in DA neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related disorders.H Ramshaw, X Xu, EJ Jaehne, P McCarthy, Z Greenberg, E Saleh, B McClure, J Woodcock, S Kabbara, S Wiszniak, Ting-Yi Wang, C Parish, M van den Buuse, BT Baune, A Lopez and Q Schwar

    Topology by Design in Magnetic nano-Materials: Artificial Spin Ice

    Full text link
    Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano--fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte

    Association between operator volume and mortality in primary percutaneous coronary intervention

    Get PDF
    Background There is a paucity of real-world data assessing the association of operator volumes and mortality specific to primary percutaneous coronary intervention (PPCI). Methods Demographic, clinical and outcome data for all patients undergoing PPCI in Leeds General Infirmary, UK, between 1 January 2009 and 31 December 2011, and 1 January 2013 and 31 December 2013, were obtained prospectively. Operator volumes were analysed according to annual operator PPCI volume (low volume: 1ā€“54 PPCI per year; intermediate volume: 55ā€“109 PPCI per year; high volume: ā‰„110ā€‰PPCI per year). Cox proportional hazards regression analyses were undertaken to investigate 30-day and 12-month all-cause mortality, adjusting for confounding factors. Results During this period, 4056 patients underwent PPCI, 3703 (91.3%) of whom were followed up for a minimum of 12 months. PPCI by low-volume operators was associated with significantly higher adjusted 30-day mortality (HR 1.48 (95% CI 1.05 to 2.08); p=0.02) compared with PPCI performed by high-volume operators, with no significant difference in adjusted 12-month mortality (HR 1.26 (95% CI 0.96 to 1.65); p=0.09). Comparisons between low-volume and intermediate-volume operators, and between intermediate and high-volume operators, showed no significant differences in 30-day and 12-month mortality. Conclusions Low operator volume is independently associated with higher probability of 30-day mortality compared with high operator volume, suggesting a volumeā€“outcome relationship in PPCI at a threshold higher than current recommendations

    Light activation of Orange Carotenoid Protein reveals bicycle-pedal single-bond isomerization

    Get PDF
    Orange Carotenoid protein (OCP) is the only known photoreceptor which uses carotenoid for its activation. It is found exclusively in cyanobacteria, where it functions to control light-harvesting of the photosynthetic machinery. However, the photochemical reactions and structural dynamics of this unique photosensing process are not yet resolved. We present time-resolved crystal structures at second-to-minute delays under bright illumination, capturing the early photoproduct and structures of the subsequent reaction intermediates. The first stable photoproduct shows concerted isomerization of C9ā€™-C8ā€™ and C7ā€™-C6ā€™ single bonds in the bicycle-pedal (s-BP) manner and structural changes in the N-terminal domain with minute timescale kinetics. These are followed by a thermally-driven recovery of the s-BP isomer to the dark state carotenoid configuration. Structural changes propagate to the C-terminal domain, resulting, at later time, in the H-bond rupture of the carotenoid keto group with protein residues. Solution FTIR and UV/Vis spectroscopy support the single bond isomerization of the carotenoid in the s-BP manner and subsequent thermal structural reactions as the basis of OCP photoreception
    • ā€¦
    corecore