14 research outputs found

    The efficacy of a self-paced VO2max test during motorized treadmill exercise

    No full text
    PURPOSE To assess the utility of a self-paced maximal oxygen uptake (VO2max) test (SPV) in eliciting an accurate measure of VO2max in comparison with a traditional graded exercise test (GXT) during motorized treadmill exercise. DESIGN This was a cross-sectional experimental study whereby recreationally trained men (n = 13, 25.5 ± 4.6 y) completed 2 maximal exercise tests (SPV, GXT) separated by a 72-h recovery period. METHODS The GXT was continuous and incremental, with prescribed 1-km/h increases every 2 min until the attainment of VO2max. The SPV consisted of 5 × 2-min stages of incremental exercise, which were self-selected and adjusted according to 5 prescribed RPE levels (RPE 11, 13, 15, 17, and 20). RESULTS Although no significant differences in VO2max were observed between the SPV and GXT (63.9 ± 3.3 cf 60.9 ± 4.6 mL · kg-1 · min-1, respectively, P > .05), the apparent 4.7% mean difference may be practically important. The 95% limits-of-agreement analysis was 3.03 ± 11.49 mL · kg-1 · min-1. Therefore, in the worst-case scenario, the GXT may underestimate measured VO2max as ascertained by the SPV by up to 19%. Conversely, the SPV could underestimate the GXT by 14%. CONCLUSIONS The current study has shown that the SPV is an accurate measure of VO2max during exercise on a motorized treadmill and may provide a slightly higher VO2max value than that obtained from a traditional GXT. The higher VO2max during the SPV may be important when prescribing training or monitoring athlete progression

    Quantitative changes in the sleep EEG at moderate altitude (1630 m and 2590 m)

    Get PDF
    BACKGROUND: Previous studies have observed an altitude-dependent increase in central apneas and a shift towards lighter sleep at altitudes >4000 m. Whether altitude-dependent changes in the sleep EEG are also prevalent at moderate altitudes of 1600 m and 2600 m remains largely unknown. Furthermore, the relationship between sleep EEG variables and central apneas and oxygen saturation are of great interest to understand the impact of hypoxia at moderate altitude on sleep. METHODS: Fourty-four healthy men (mean age 25.0±5.5 years) underwent polysomnographic recordings during a baseline night at 490 m and four consecutive nights at 1630 m and 2590 m (two nights each) in a randomized cross-over design. RESULTS: Comparison of sleep EEG power density spectra of frontal (F3A2) and central (C3A2) derivations at altitudes compared to baseline revealed that slow-wave activity (SWA, 0.8-4.6 Hz) in non-REM sleep was reduced in an altitude-dependent manner (∼4% at 1630 m and 15% at 2590 m), while theta activity (4.6-8 Hz) was reduced only at the highest altitude (10% at 2590 m). In addition, spindle peak height and frequency showed a modest increase in the second night at 2590 m. SWA and theta activity were also reduced in REM sleep. Correlations between spectral power and central apnea/hypopnea index (AHI), oxygen desaturation index (ODI), and oxygen saturation revealed that distinct frequency bands were correlated with oxygen saturation (6.4-8 Hz and 13-14.4 Hz) and breathing variables (AHI, ODI; 0.8-4.6 Hz). CONCLUSIONS: The correlation between SWA and AHI/ODI suggests that respiratory disturbances contribute to the reduction in SWA at altitude. Since SWA is a marker of sleep homeostasis, this might be indicative of an inability to efficiently dissipate sleep pressure

    Effects of endurance training on the breathing pattern of professional cyclists

    No full text
    The aim of this longitudinal study was to clarify the changes induced by endurance training on the breathing pattern of 13 professional cyclists (age±SD: 24±2 years; V̇O2 max ∼75 ml · kg-1 · min-1) during the three periods (rest, precompetition, and competition) of a sports season. Both the volume and the intensity of training were quantified during these periods. In each session (corresponding to each of the three periods) all subjects performed (1) a pulmonary function test (to measure forced vital capacity [FVC], peak expiratory flow [PEF], and maximal voluntary ventilation [MVV]), and (2) a ramp test until exhaustion on a cycle ergometer (workload increases of 25 W · min-1). The following variables were recorded every 100 W until the end of the tests: pulmonary ventilation (V̇E, in / · min-1 BTPS), tidal volume (VT, in IBTPS), breathing frequency (fb, in breaths · min-1), ventilatory equivalents for oxygen (V̇E · V̇O2 -1) and carbon dioxide (V̇E · V̇CO2 -1), inspiratory (TI) and expiratory (TE) times (s), ratio of TI to total respiratory duration or inspiratory "duty cycle" (TI/TTOT), and mean inspiratory flow rate (VT/TI, in /· s-1). The results showed no changes in any of these variables (p>0.05) between the three periods of study, despite significant changes in training loads (i.e., increases in the volume and/or intensity of training throughout the season). These findings suggest that endurance conditioning does not alter the breathing pattern of professional cyclists during an incremental exercise test.Sin financiación1.077 JCR (2001) Q3, 54/74 PhysiologyUE
    corecore