14 research outputs found

    Who leads research productivity growth? Guidelines for R&D policy-makers

    Full text link
    [EN] This paper evaluates to what extent policy-makers have been able to promote the creation and consolidation of comprehensive research groups that contribute to the implementation of a successful innovation system. Malmquist productivity indices are applied in the case of the Spanish Food Technology Program, finding that a large size and a comprehensive multi-dimensional research output are the key features of the leading groups exhibiting high efficiency and productivity levels. While identifying these groups as benchmarks, we conclude that the financial grants allocated by the program, typically aimed at small-sized and partially oriented research groups, have not succeeded in reorienting them in time so as to overcome their limitations. We suggest that this methodology offers relevant conclusions to policy evaluation methods, helping policy-makers to readapt and reorient policies and their associated means, most notably resource allocation (financial schemes), to better respond to the actual needs of research groups in their search for excellence (micro-level perspective), and to adapt future policy design to the achievement of medium-long term policy objectives (meso and macro-level).Jiménez Saez, F.; Zabala Iturriagagoitia, JM.; Zofio, JL. (2013). Who leads research productivity growth? Guidelines for R&D policy-makers. Scientometrics. 94(1):273-303. doi:10.1007/s11192-012-0763-0S273303941Abbring, J. H., & Heckman, J. J. (2008). Dynamic policy analysis. In L. Mátyás & P. Sevestre (Eds.), The econometrics of panel data (3rd ed., pp. 795–863). Heidelberg: Springer.Acosta Ballesteros, J., & Modrego Rico, A. (2001). Public financing of cooperative R&D projects in Spain: the concerted projects under the national R&D plan. Research Policy, 30, 625–641.Arbel, A. (1981). Policy evaluation in the dynamic input–output model. International Journal of Systems Science, 12, 255–260.Arnold, E. (2004). Evaluation research and innovation policy: A systems world needs systems evaluations. Research Evaluation, 13, 3–17.Arrow, J. K. (1962). Economic welfare and the allocation of resources for inventions. In R. Nelson (Ed.), The rate and direction of inventive activity: Economic and social factor (pp. 609–625). Princeton: Princeton University Press and NBER.Autio, E. (1997). New, technology-based firms in innovation networks symplectic and generative impacts. Research Policy, 26, 263–281.Balk, B. (2001). Scale efficiency and productivity change. Journal of Productivity Analysis, 15, 153–183.Balzat, M., & Hanusch, H. (2004). Recent trends in the research on national innovation systems. Journal of Evolutionary Economics, 14, 197–210.Berg, S. A., Førsund, F. R., & Jansen, E. S. (1992). Malmquist indices of productivity growth during the deregulation of Norwegian banking. Scandinavian Journal of Economics, 94, S211–S228.Bergek, A., Carlsson, B., Lindmark, S., Rickne, A., & Jacobsson, S. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy, 37, 407–429.Bonaccorsi, A., & Daraio, C. (2005). Exploring size and agglomeration effects on public research productivity. Scientometrics, 63(1), 87–120.Buisseret, T. J., Cameron, H., & Georghiou, L. (1995). What difference does it make? Additionality in the public support of R&D in large firms. International Journal of Technology Management, 10, 587–600.Bustelo, M. (2006). The potential role of standards and guidelines in the development of an evaluation culture in Spain. Evaluation, 12, 437–453.Chavas, J. P., & Cox, T. M. (1999). A generalized distance function and the analysis of production efficiency. Southern Economic Journal, 66, 295–318.CICYT. (1987). Programa Nacional de Tecnología de los Alimentos. Madrid: Ministerio de Educación y Ciencia.CICYT (1988). Plan Nacional de Investigación Científica y Desarrollo Tecnológico 1988–1991. Ministerio de Educación y Ciencia, Secretaría de Estado de Universidades e Investigación, Madrid.Cooper, W. W., Seiford, L. M., & Tone, K. (2000). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-software. Boston: Kluwer Academic Publishers.David, P., Mowery, D., & Steinmueller, W. E. (1994). Analyzing the economic payoffs from basic research. In D. Mowery (Ed.), Science and technology policy in interdependent economies (pp. 57–78). Boston: Kluwer Academic Publishers.Dopfer, K., Foster, J., & Potts, J. (2004). Micro-meso-macro. Journal of Evolutionary Economics, 14, 263–279.Edquist, C., & Hommen, L. (2008). Comparing national systems of innovation in Asia and Europe: Theory and comparative framework. In C. Edquist & L. Hommen (Eds.), Small country innovation systems: Globalisation, change and policy in Asia and Europe (pp. 1–28). Cheltenham: Edward Elgar.Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84, 66–83.Farrell, M. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, Series A, General, 120(3), 253–281.Førsund, F. R. (1993). Productivity growth in Norwegian ferries. In H. O. Fried, C. A. K. Lovell, & S. S. Schmidt (Eds.), The measurement of productive efficiency: Techniques and applications (pp. 352–373). New York: Oxford University Press.Førsund, F. R. (1997). The Malmquist productivity index, TFP and scale. University of Oslo, Oslo: Working Paper, Department of Economics and Business Administration.Freeman, C. (1987). Technology policy and economic performance: Lessons from Japan. London: Printer Publishers.García-Martínez, M., & Briz, J. (2000). Innovation in the Spanish food & drink industry. International Food and Agribusiness Management Review, 3, 155–176.Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage Publications.Grammatikopoulos, V., Kousteiios, A., Tsigilis, N., & Theodorakis, Y. (2004). Applying dynamic evaluation approach in education. Studies in Educational Evaluation, 30, 255–263.Grifell-Tatjé, E., & Lovell, C. A. K. (1999). A generalized Malmquist productivity index. Top, 7(1), 81–101.Grimpe, C., & Sofka, W. (2007). Search patterns and absorptive capacity: A comparison of low- and high-technology firms from thirteen European countries. Discussion paper no. 07-062. Centre for European Economic Research (ZEW), Mannheim, Germany.Guan, J., & Wang, J. (2004). Evaluation and interpretation of knowledge production efficiency. Scientometrics, 59(1), 131–155.Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. H. M. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74, 413–432.Jiménez-Sáez, F. (2005). Una Evaluación del Programa Nacional de Tecnología de Alimentos: análisis de la articulación fomentada sobre el Sistema Alimentario de Innovación en España. PhD dissertation, Servicio de Publicaciones de la Universidad Politécnica de Valencia, Valencia.Jiménez-Sáez, F., Zabala-Iturriagagoitia, J. M., Zofío, J. L., & Castro-Martínez, E. (2011). Evaluating research efficiency within National R&D Programmes. Research Policy, 40, 230–241.Kao, C. (2008). Efficiency analysis of university departments: An empirical study. OMEGA, 36, 653–664.Kuhlmann, S. (2003). Evaluation of research and innovation policies: A discussion of trends with examples from Germany. International Journal of Technology Management, 26, 131–149.Laitinen, E. K. (2002). A dynamic performance measurement system: Evidence from small Finnish technology companies. Scandinavian Journal of Management, 18, 65–99.Laranja, M., Uyarra, E., & Flanagan, K. (2008). Policies for science, technology and innovation: Translating rationales into regional policies in a multi-level setting. Research Policy, 37(5), 823–835.Lee, T.-L., & von Tunzelman, N. (2005). A dynamic analytic approach to national innovation systems: The IC industry in Taiwan. Research Policy, 34, 425–440.Lipsey, R., & Carlaw, K. (1998). A structuralist assessment of technology policies: Taking Schumpeter seriously on policy. Ottawa: Industry Canada Research Publications Program.Lipsey, R., Carlaw, K., & Bekar, C. (2005). Economic transformations: General purpose technologies and long term economic growth. Oxford: Oxford University Press.Lundvall, B. Å. (1992). National systems of innovation: Toward a theory of innovation and interactive learning. London: Printer Publishers.Lundvall, B. Å., Johnson, B., Andersen, E. S., & Dalum, B. (2002). National systems of production, innovation and competence building. Research Policy, 31, 213–231.Markard, J., & Truffer, B. (2008). Actor-oriented analysis of innovation systems: Exploring micro-meso level linkages in the case of stationary fuel cells. Technology Analysis & Strategic Management, 20, 443–464.Metcalfe, J. S. (2002). Equilibrium and evolutionary foundations of competition and technology policy: New perspectives on the division of labour and the innovation process. CRIC Working Papers series, University of Manchester.Miettinen, R. (1999). The riddle of things. Activity theory and actor network theory as approaches of studying innovations. Mind, Culture and Activity, 6, 170–195.Molas-Gallart, J., & Davies, A. (2006). Toward theory-led evaluation: The experience of European science, technology, and innovation policies. American Journal of Evaluation, 27, 64–82.Mytelka, L. K., & Smith, K. (2002). Policy learning and innovation theory: An interactive and co-evolving process. Research Policy, 31, 1467–1479.Olazarán, M., Lavía, C., & Otero, B. (2004). ¿Hacia una segunda transición en la ciencia? Política científica y grupos de investigación. Revista Española de Sociología, 4, 143–172.Potts, J. (2007). The innovation system & economic evolution. Productivity commission submission, public support for science & innovation, productivity commission, Camberra.Ray, S., & Desli, E. (1997). Productivity growth, technical progress, and efficiency change in industrialized countries: Comment. American Economic Review, 87(5), 1033–1039.Rip, A., & Nederhof, A. J. (1986). Between dirigism and laissez-faire: Effects of implementing the science policy priority for biotechnology in the Netherlands. Research Policy, 15, 253–268.Schmidt, E. K., Graversen, E. K., & Langberg, K. (2003). Innovation and dynamics in public research environments in Denmark: A research-policy perspective. Science and Public Policy, 30, 107–116.Schmoch, U., & Schubert, T. (2009). Sustainability of incentives for excellent research—The German case. Scientometrics, 81(1), 195–218.Shephard, R. (1970). Theory of cost and production functions. New Jersey: Princeton University Press.Simar, L., & Wilson, P. W. (1998). Productivity growth in industrialized countries. Discussion paper 9810, Universite Catholique de Louvain, Belgium.Van Raan, A. F. J. (2000). R&D evaluation at the beginning of the new century. Research Evaluation, 8, 81–86.Zofio, J. L. (2007). Malmquist productivity index decompositions: A unifying framework. Applied Economics, 39, 2371–2387.Zofio, J. L., & Lovell, C. A. K. (1998). Yet another Malmquist productivity index decomposition. Working paper, Department of Economics, University of Georgia, Athens, GA 30602, USA.Zofio, J. L., & Lovell, C. A. K. (2001). Graph efficiency and productivity measures: An application to US agriculture. Applied Economics, 33(10), 1433–1442.Zofio, J. L., & Prieto, A. M. (2006). Return to dollar, generalized distance function and the Fisher productivity index. Spanish Economic Review, 8, 113–138

    Is eco-efficiency in greenhouse gas emissions converging among European Union countries?

    Get PDF
    Eco-efficiency refers to the ability to produce more goods and services with less impact on the environment and less consumption of natural resources. This issue has become a matter of concern that is receiving increasing attention from politicians, scientists and researchers. Furthermore, greenhouse gases emitted as a result of production processes have a marked impact on the environment and are also the foremost culprit of global warming and climate change. This paper assesses convergence in eco-efficiency in greenhouse gas emissions in the European Union. Eco-efficiency is assessed at both country and greenhouse-gas-specific levels using Data Envelopment Analysis techniques and directional distance functions, as recently proposed by Picazo-Tadeo et al. (Eur J Oper Res, 220:798–809, 2012). Convergence is then evaluated using the Phillips and Sul (Econometrica, 75:1771–1855, 2007) approach that allows testing for the existence of convergence groups. Although the results point to the existence of different convergence clubs depending on the specific pollutant considered, they signal the existence of at least four clear groups of countries. The first two groups are core European Union high-income countries (Benelux, Germany, Italy, Austria, the United Kingdom and Scandinavian countries). A third club is made up of peripheral countries (Spain, Ireland, Portugal and Greece) together with some Eastern countries (Latvia and Slovenia), while the remaining clubs consist of groups containing Eastern European countries

    Malmquist productivity index decompositions: a unifying framework

    No full text
    In two widely cited but unpublished working papers, Simar and Wilson (1998) and Zofio and Lovell (1998) proposed an alternative decomposition of the Malmquist Productivity Index, which retained what seemed to be the strongholds of previous proposals with regard to the contribution of technological and efficiency change to productivity change. Namely, a technical change term with regard to the best practice variable returns to scale (VRS) technology, which is to be found in Ray and Desli (1997) and a scale efficiency change term that illustrates a firm's situation with regard to optimal scale (benchmark technology), Fare et al. (1994). Attaining this objective required the introduction of an additional term in the Malmquist Productivity Index decomposition, which would reflect the scale bias of technical change. It is our objective to provide economic rationale for this term within a theory of production context, the existing decompositions and recent articles that further elaborate on this issue. The ideas are illustrated using productivity trends in 17 OECD countries.

    Firm growth and productivity growth: evidence from a panel VAR

    No full text
    This paper offers new insights into the processes of firm growth by applying a reduced form vector autoregression (VAR) model to longitudinal panel data on French manufacturing firms (1996-2004). We observe the co-evolution of key variables such as growth of employment, sales, and gross operating surplus, as well as growth of multifactor productivity. It seems that employment growth is negatively associated with subsequent growth of productivity. This latter result, however, is sensitive to our choice of productivit indicator, i.e. multifactor productivity or labour productivit
    corecore