22 research outputs found

    The impact of ageing reveals distinct roles for human dentate gyrus and CA3 in pattern separation and object recognition memory

    Get PDF
    © 2017 The Author(s). Both recognition of familiar objects and pattern separation, a process that orthogonalises overlapping events, are critical for effective memory. Evidence is emerging that human pattern separation requires dentate gyrus. Dentate gyrus is intimately connected to CA3 where, in animals, an autoassociative network enables recall of complete memories to underpin object/event recognition. Despite huge motivation to treat age-related human memory disorders, interaction between human CA3 and dentate subfields is difficult to investigate due to small size and proximity. We tested the hypothesis that human dentate gyrus is critical for pattern separation, whereas, CA3 underpins identical object recognition. Using 3 T MR hippocampal subfield volumetry combined with a behavioural pattern separation task, we demonstrate that dentate gyrus volume predicts accuracy and response time during behavioural pattern separation whereas CA3 predicts performance in object recognition memory. Critically, human dentate gyrus volume decreases with age whereas CA3 volume is age-independent. Further, decreased dentate gyrus volume, and no other subfield volume, mediates adverse effects of aging on memory. Thus, we demonstrate distinct roles for CA3 and dentate gyrus in human memory and uncover the variegated effects of human ageing across hippocampal regions. Accurate pinpointing of focal memory-related deficits will allow future targeted treatment for memory loss

    Robust imaging of hippocampal inner structure at 7T: in vivo acquisition protocol and methodological choices

    Get PDF
    International audienceOBJECTIVE:Motion-robust multi-slab imaging of hippocampal inner structure in vivo at 7T.MATERIALS AND METHODS:Motion is a crucial issue for ultra-high resolution imaging, such as can be achieved with 7T MRI. An acquisition protocol was designed for imaging hippocampal inner structure at 7T. It relies on a compromise between anatomical details visibility and robustness to motion. In order to reduce acquisition time and motion artifacts, the full slab covering the hippocampus was split into separate slabs with lower acquisition time. A robust registration approach was implemented to combine the acquired slabs within a final 3D-consistent high-resolution slab covering the whole hippocampus. Evaluation was performed on 50 subjects overall, made of three groups of subjects acquired using three acquisition settings; it focused on three issues: visibility of hippocampal inner structure, robustness to motion artifacts and registration procedure performance.RESULTS:Overall, T2-weighted acquisitions with interleaved slabs proved robust. Multi-slab registration yielded high quality datasets in 96 % of the subjects, thus compatible with further analyses of hippocampal inner structure.CONCLUSION:Multi-slab acquisition and registration setting is efficient for reducing acquisition time and consequently motion artifacts for ultra-high resolution imaging of the inner structure of the hippocampus

    A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals?

    Get PDF
    The advent of high-resolution magnetic resonance imaging (MRI) has enabled in vivo research in a variety of populations and diseases on the structure and function of hippocampal subfields and subdivisions of the parahippocampal gyrus. Because of the many extant and highly discrepant segmentation protocols, comparing results across studies is difficult. To overcome this barrier, the Hippocampal Subfields Group was formed as an international collaboration with the aim of developing a harmonized protocol for manual segmentation of hippocampal and parahippocampal subregions on high-resolution MRI. In this commentary we discuss the goals for this protocol and the associated key challenges involved in its development. These include differences among existing anatomical reference materials, striking the right balance between reliability of measurements and anatomical validity, and the development of a versatile protocol that can be adopted for the study of populations varying in age and health. The commentary outlines these key challenges, as well as the proposed solution of each, with concrete examples from our working plan. Finally, with two examples, we illustrate how the harmonized protocol, once completed, is expected to impact the field by producing measurements that are quantitatively comparable across labs and by facilitating the synthesis of findings across different studies. © 2016 Wiley Periodicals, Inc
    corecore