166 research outputs found

    Ethical issues in implementation research: a discussion of the problems in achieving informed consent

    Get PDF
    Background: Improved quality of care is a policy objective of health care systems around the world. Implementation research is the scientific study of methods to promote the systematic uptake of clinical research findings into routine clinical practice, and hence to reduce inappropriate care. It includes the study of influences on healthcare professionals' behaviour and methods to enable them to use research findings more effectively. Cluster randomized trials represent the optimal design for evaluating the effectiveness of implementation strategies. Various codes of medical ethics, such as the Nuremberg Code and the Declaration of Helsinki inform medical research, but their relevance to cluster randomised trials in implementation research is unclear. This paper discusses the applicability of various ethical codes to obtaining consent in cluster trials in implementation research. Discussion: The appropriate application of biomedical codes to implementation research is not obvious. Discussion of the nature and practice of informed consent in implementation research cluster trials must consider the levels at which consent can be sought, and for what purpose it can be sought. The level at which an intervention is delivered can render the idea of patient level consent meaningless. Careful consideration of the ownership of information, and rights of access to and exploitation of data is required. For health care professionals and organizations, there is a balance between clinical freedom and responsibility to participate in research. Summary: While ethical justification for clinical trials relies heavily on individual consent, for implementation research aspects of distributive justice, economics, and political philosophy underlie the debate. Societies may need to trade off decisions on the choice between individualized consent and valid implementation research. We suggest that social sciences codes could usefully inform the consideration of implementation research by members of Research Ethics Committees

    Truncating Homozygous Mutation of Carboxypeptidase E (CPE) in a Morbidly Obese Female with Type 2 Diabetes Mellitus, Intellectual Disability and Hypogonadotrophic Hypogonadism

    Get PDF
    Carboxypeptidase E is a peptide processing enzyme, involved in cleaving numerous peptide precursors, including neuropeptides and hormones involved in appetite control and glucose metabolism. Exome sequencing of a morbidly obese female from a consanguineous family revealed homozygosity for a truncating mutation of the CPE gene (c.76_98del; p.E26RfsX68). Analysis detected no CPE expression in whole blood-derived RNA from the proband, consistent with nonsense-mediated decay. The morbid obesity, intellectual disability, abnormal glucose homeostasis and hypogonadotrophic hypogonadism seen in this individual recapitulates phenotypes in the previously described fat/fat and Cpe knockout mouse models, evidencing the importance of this peptide/hormone-processing enzyme in regulating body weight, metabolism, and brain and reproductive function in humans.The Section of Investigative Medicine is funded by grants from the Medical Research Council, Biotechnology and Biological Sciences Research Council (BBSRC), National Institute for Health Research (NIHR), an Integrative Mammalian Biology (IMB) Capacity Building Award, an FP7- HEALTH- 2009- 241592 EuroCHIP grant, and is supported by the NIHR Imperial Biomedical Research Centre Funding Scheme. This work was also funded by a project grant from Diabetes UK to AB and RW, and Biomedical Research Centre awards to AB, RW, MVH and CLR. Authors AB and AG are each also funded by the UK Medical Research Council. JB is also funded by the Wellcome Trust. The Imperial Genomics Facility is funded by the NIHR Imperial BRC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Speech production deficits in early readers: predictors of risk

    Get PDF
    Speech problems and reading disorders are linked, suggesting that speech problems may potentially be an early marker of later difficulty in associating graphemes with phonemes. Current norms suggest that complete mastery of the production of the consonant phonemes in English occurs in most children at around 6–7 years. Many children enter formal schooling (kindergarten) around 5 years of age with near-adult levels of speech production. Given that previous research has shown that speech production abilities and phonological awareness skills are linked in preschool children, we set out to examine whether this pattern also holds for children just beginning to learn to read, as suggested by the critical age hypothesis. In the present study, using a diverse sample, we explored whether expressive phonological skills in 92 5-year-old children at the beginning and end of kindergarten were associated with early reading skills. Speech errors were coded according to whether they were developmentally appropriate, position within the syllable, manner of production of the target sounds, and whether the error involved a substitution, omission, or addition of a speech sound. At the beginning of the school year, children with significant early reading deficits on a predictively normed test (DIBELS) made more speech errors than children who were at grade level. Most of these errors were typical of kindergarten children (e.g., substitutions involving fricatives), but reading-delayed children made more of these errors than children who entered kindergarten with grade level skills. The reading-delayed children also made more atypical errors, consistent with our previous findings about preschoolers. Children who made no speech errors at the beginning of kindergarten had superior early reading abilities, and improvements in speech errors over the course of the year were significantly correlated with year-end reading skills. The role of expressive vocabulary and working memory were also explored, and appear to account for some of these findings

    Selection and Validation of Reference Genes for Quantitative Real-Time PCR in Buckwheat (Fagopyrum esculentum) Based on Transcriptome Sequence Data

    Get PDF
    Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications – geNorm, NormFinder and BestKeeper - were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species

    Equivalence and noninferiority trials – are they viable alternatives for registration of new drugs? (III)

    Get PDF
    The scientific community's reliance on active-controlled trials is steadily increasing, as widespread agreement emerges concerning the role of these trials as viable alternatives to placebo trials. These trials present substantial challenges with regard to design and interpretation as their complexity increases, and the potential need for larger sample sizes impacts the cost and time variables of the drug development process. The potential efficacy and safety benefits derived from these trials may never be demonstrated by other methods. Active-controlled trials can develop valuable data to inform both prescribers and patients about the dose- and time-dependent actions of any new drug and can contribute to the management and communication of risks associated with the relevant therapeutic products

    Experimental mutation-accumulation on the X chromosome of Drosophila melanogaster reveals stronger selection on males than females

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sex differences in the magnitude or direction of mutational effect may be important to a variety of population processes, shaping the mutation load and affecting the cost of sex itself. These differences are expected to be greatest after sexual maturity. Mutation-accumulation (MA) experiments provide the most direct way to examine the consequences of new mutations, but most studies have focused on juvenile viability without regard to sex, and on autosomes rather than sex chromosomes; both adult fitness and X-linkage have been little studied. We therefore investigated the effects of 50 generations of X-chromosome mutation accumulation on the fitness of males and females derived from an outbred population of <it>Drosophila melanogaster</it>.</p> <p>Results</p> <p>Fitness declined rapidly in both sexes as a result of MA, but adult males showed markedly greater fitness loss relative to their controls compared to females expressing identical genotypes, even when females were made homozygous for the X. We estimate that these mutations are partially additive (h ~ 0.3) in females. In addition, the majority of new mutations appear to harm both males and females.</p> <p>Conclusions</p> <p>Our data helps fill a gap in our understanding of the consequences of sexual selection for genetic load, and suggests that stronger selection on males may indeed purge deleterious mutations affecting female fitness.</p
    • …
    corecore