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Abstract
Carboxypeptidase E is a peptide processing enzyme, involved in cleaving numerous pep-

tide precursors, including neuropeptides and hormones involved in appetite control and glu-

cose metabolism. Exome sequencing of a morbidly obese female from a consanguineous

family revealed homozygosity for a truncating mutation of the CPE gene (c.76_98del; p.

E26RfsX68). Analysis detected no CPE expression in whole blood-derived RNA from the

proband, consistent with nonsense-mediated decay. The morbid obesity, intellectual dis-

ability, abnormal glucose homeostasis and hypogonadotrophic hypogonadism seen in this

individual recapitulates phenotypes in the previously described fat/fat and Cpe knockout

mouse models, evidencing the importance of this peptide/hormone-processing enzyme in

regulating body weight, metabolism, and brain and reproductive function in humans.
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Introduction
An unknown proportion of severe cases of obesity are caused by monogenic disease. Many of
the known monogenic forms of obesity, affecting appetite regulation through hypothalamic
pathways, including the leptin-melanocortin pathway, were first identified from murine mod-
els of obesity. It is now two decades since the discovery of defects in Lep and Lepr in the mouse
models ob/ob and db/db respectively led to the discovery of the first monogenic obesity syn-
dromes, leptin and leptin receptor deficiency, in humans [1, 2]. The more recently reported
mutations in SH2B1 causing obesity and maladaptive behaviours also followed on from inves-
tigation of the severely obese sh2b1-null mice models [3]. Another spontaneously occurring
mutation causing murine obesity is the fat/fatmouse. CPE was discovered in 1982, and muta-
tions in the Cpe gene causing the fat/fat phenotype have been known since 1995 [4, 5]. How-
ever, no null mutations in CPE have been described in humans to date. Carboxypeptidase E
(CPE) is involved in the processing of the majority of neuropeptides and peptide hormones,
removing C-terminal basic residues following initial cleavage by an endopeptidase [6]. Absence
of functional CPE in the fat/fatmouse and Cpe knockout mouse leads to abnormally low levels
of a number of neuropeptides and peptide hormones resulting in a range of phenotypes,
including late-onset obesity, hyperproinsulinaemia, infertility, anxiety and depression, hippo-
campal neuronal degeneration and memory deficits [4, 7–11].

Recently, exome sequencing of severely obese individuals has been instrumental in identify-
ing several new forms of monogenic obesity [3, 12–15]. Here we present the results of whole
exome sequencing of a consanguineous Sudanese family with a Mendelian pattern of a com-
plex obesity syndrome, leading to the discovery of a new monogenic obesity syndrome, CPE
deficiency, in a morbidly obese woman with intellectual disability, type 2 diabetes mellitus
(T2DM) and hypogonadotrophic hypogonadism, recapitulating the phenotype of the fat/fat
mouse.

Methods

Study participants
In this study we investigated a morbidly obese Sudanese female proband and her family,
recruited from the adult genetic obesity clinic run by APG at Hammersmith Hospital, Imperial
College Healthcare NHS Trust, London UK. Whole blood samples were taken from 6 members
of the family for DNA extraction. All subjects gave written informed consent for participation
in this study. The study was specifically approved by the National Research Ethics Service
Committee London –West London (study number 12/LO/0396) and National Research Ethics
Service Committee London—Fulham (study number 07/Q0411/19). The individuals described
in this manuscript have given written informed consent (as outlined in the PLOS consent
form) to publish these case details.

Exome sequencing and variant calling
For the proband, mother and one sister (II.6, I.2 and II.5 respectively in Fig 1), whole-exome
sequencing libraries were prepared using SureSelectXT Human All Exon V4+UTRs (71Mb)
(Agilent Technologies, Santa Clara, CA) and sequenced on a HiSeq25000 platform generating
100bp paired end reads (performed by the Genomics Laboratory, MRC Clinical Sciences Cen-
tre, Imperial College London, UK). The quality of sequencing data was assessed with FastQC
version 0.10.0. BWAmem version 0.7.2 was used to map sequencing reads to the GRCh37
(hg19) reference assembly of the human genome. To reduce false positive read mapping the
hs37d5ss decoy sequences obtained from the 1000 genomes project FTP server were included
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as mapping targets. After reference mapping, duplicate reads were marked with Picard tools
version 1.85. Processing of mapped reads and calling of single nucleotide variants and short
insertions/deletions was carried out with the Genome Analysis Toolkit (GATK) version 2.6.
Copy number variation (CNV) analysis was carried out in the proband, and her mother and
sister (II.5), by read depth analysis of exome sequencing data [16].

Variant prioritisation
Based on a family history of consanguinity (the proband’s parents are first cousins) and the
extreme phenotype of the proband, an autosomal recessive mode of inheritance was hypothe-
sised. Therefore all homozygous or compound heterozygous exonic variants, not present in a
homozygous state in the unaffected mother and sister and at a read depth of at least 5 were con-
sidered. These variants were prioritised based on minor allele frequency of<1% in the 1000
Genomes project phase 1 release and the NHLBI Exome Sequencing Project (NHLBI Esp) [17,
18]. Variants that were synonymous or predicted to be benign by two out of three in silico pre-
diction programs (SIFT, Polyphen2, PROVEAN1) were excluded [19, 20].

A list of genes known to cause obesity when disrupted and a similar list for intellectual dis-
ability were curated based on Online Mendelian Inheritance in Man (OMIM) and HGMD Pro
database searches and literature (S1 and S2 Tables). All variants found by whole exome
sequencing in the subjects (I.2, II.5 and II.6) were screened against the lists to exclude known
genetic causes of obesity and intellectual disability.

Variant validation and segregation analysis
The deletion found in CPE was validated through Sanger sequencing. Primers used to amplify
the first exon of CPE were CPE_F1: GGAAGGTGAGGCGAGTAGAG and CPE_R1:
CCCTTACCAGGCTCATGGAC. Because of the high GC-content of the region a denaturation
temperature of 98°C was used. The same method was used to determine the segregation of the
mutation among the family members.

Fig 1. Pedigree of the affected family. Circles represent females and squares represent males. The proband is indicated by an arrow. Solid symbols
indicate homozygosity for E26RfsX68, while half solid symbols indicate heterozygosity and open symbols non-carriers. The question mark in I.1 and II.3
indicate that genotype is not known. BMI, body mass index, in kg/m2, and age are as of day of examination. T2DM, Type 2 diabetes mellitus.

doi:10.1371/journal.pone.0131417.g001
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Expression analysis
Real time PCR analysis of CPEmRNA expression was performed in blood samples from the
proband (II.6), heterozygous sister (II.5) and six control females matched for age, BMI and
T2DM status. Total RNA was isolated from whole blood samples using the PAXgene blood
RNA kit (Qiagen Ltd, Manchester, UK). Reverse transcription to obtain cDNA was carried out
with 500ng total RNA using the RT2 Easy First Strand kit (Qiagen Ltd). Quantitative PCR was
performed on each sample in triplicate, on a CFX384 real-time PCR detection system (Bio-Rad
Laboratories, Hemel Hempstead, UK), using RT2 SYBR Green qPCR Mastermix, with primer
assays for CPE (NM_001873, amplifies a 90bp product within exon 8 and 9) and the house-
keeping geneHPRT1 (NM_000194) (Qiagen Ltd). Relative expression levels for the proband,
sibling and control samples were determined using the ΔΔCt method using a common refer-
ence sample, and are presented in as fold change in expression (2(-ΔΔCt)) [21].

Results

Clinical characterisation
The proband examined in this study was a 20 year old morbidly obese, Sudanese female, with child-
hood-onset obesity (current body mass index (BMI) 51.5 kg/m2), intellectual disability, newly diag-
nosed T2DM and hypogonadotrophic hypogonadism (Fig 2 and individual II.6 in Fig 1). An older
brother (II.3), who died of unknown causes at the age of 21 years, also had childhood-onset severe
obesity, intellectual disability and hypogenitalism, but no DNAwas available from this individual.
Other potential genetic causes of this phenotype, Prader-Willi syndrome and Fragile X syndrome,
had previously been excluded in the proband by SNRPNDNAmethylation analysis and demon-
stration of normal 5’-UTR CGG repeat number in the FMR1 gene. No abnormality was detected
by clinical array comparative genomic hybridisation (Agilent 8x60K 60mer oligo, ISCA design
024612). Other family members: the proband’ s mother; two sisters and two brothers (Fig 1), all
had a history of mild obesity, with one brother (II.4) who achieved normal weight through lifestyle
changes. There was no history of intellectual disability, amenorrhoea or T2DM in any of other fam-
ily members. Although clinical data available from the father (I.1) revealed no obesity or any signs
of intellectual disability, hypogonadism or T2DM, DNAwas not available for further testing.

Whole exome sequencing data analysis
After the application of the filtration strategy of the exome data, four homozygous, rare and
predicted deleterious variants were found in the proband, and were in a heterozygous state or
absent in the mother and heterozygous sister (Table 1). Only one of these was within a candi-
date gene for obesity: a frameshift deletion, c.76_98del, in exon 1 of the CPE gene, resulting in
a p.E26RfsX68 truncation of the protein. An exact 7 nucleotide repeat (GGGCGCC) at the
breakpoints, might indicate a microhomology-mediated deletion mechanism (Fig 3) [22].

Sanger sequencing confirmed homozygosity for this mutation in the proband and heterozy-
gosity in her mother, sister (II.5) and two unaffected brothers (II.2 and II.4). Another unaf-
fected sister (II.1) did not carry the deletion (Fig 1). All other variants found in the proband,
mother and sister (II.6, I.2 and II.5) by exome sequencing and the predicted CNVs were
screened for known obesity and/or intellectual disability causing variants, but no variants were
found that provided an explanation for the phenotypes.

As far as we are aware no CPE null mutations have been described in humans so far. The
E26RfsX68 mutation has not been reported in publicly-available datasets from the 1000 Genomes
project and the NHLBI Exome Sequencing Project. The deletion, however, is reported in two
Caucasians in heterozygous state in the Exome Aggregation Consortium (ExAC) [23].
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CPEmRNA expression levels
Since the mutation found in CPE causes a frameshift and premature truncation of the protein,
it is directly deleterious and likely to be silenced by nonsense-mediated decay. To confirm this,
mRNA analysis was performed using real time PCR on the proband, a heterozygous sister

Fig 2. Clinical features of proband with homozygous truncatingCPEmutation. Photograph of proband
carrying a homozygous truncating deletion ofCPE. Specific written consent for the photograph and case
details was obtained from proband and mother. At the time of examination, the proband had a weight of 130.2
kg and height of 1.59 m with body mass index (BMI) 51.5 kg/m2. There was some intellectual disability, for
example despite adequate schooling she was unable to read or write words. She had newly diagnosed type 2
diabetes mellitus with fasting glucose 383 mg/dL, 21.1 mmol/L; HbA1c 114 mmol/mol, 12.6%) and
hypogonadotrophic hypogonadism with primary amenorrhea (serum oestradiol 78 pmol/L [post-menopausal
range <100 pmol/L], 21.2 pg/mL; LH 2.7 IU/L, FSH 2.0 IU/L). Serum hormone analysis excluded other causes
of amenorrhoea including polycystic ovary syndrome and hyperprolactinaemia (testosterone 1.2 nmol/L
(normal <2.7), 0.35 ng/mL (normal <0.78); normal androstenedione, 17-hydroxyprogesterone,
dehydroepiandrosterone sulphate (DHEAS), prolactin). There was no history of depression or anxiety.

doi:10.1371/journal.pone.0131417.g002
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(II.5) and 6 matched female controls (age range 32–59 years; BMI range 47.8–53.3 kg/m2; 3
with and 3 without T2DM).

Table 1. Homozygous mutations identified in proband.

Gene
symbol

Variant Exonic
function

in silico prediction 1000 genome /
ESP650

SNP 138 OMIM

PolyPhen-
2

SIFT PROVEAN

CPE 23_31del Frameshift
deletion

- - - np np Less active protein leads to pre-
disposition of early onset of T2DM

MYL1 M1fs Frameshift
insertion

- - - np np -

XDH L287V Missense
mutation

Damaging Deleterious Neutral 0.0002 rs138674014 Xanthinuria Type 1

PABPC4L R263T Missense
mutation

- - - np np -

Details of the homozygous, rare and predicted deleterious variants found in the proband, which were either absent or in heterozygous state in the mother

and sister (II.5). np, not present in database; CPE, Carboxypeptidase E; MYL1, myosin, light chain 1; XDH, xanthine dehydrogenase; PABPC4L, poly(A)
binding protein, cytoplasmic 4-like.

doi:10.1371/journal.pone.0131417.t001

Fig 3. Location of c.76_98del; p. E26RfsX68CPEmutation. A: Schematic overview of the exons ofCPE (Refseq: NM_001873). Dark shaded areas are
UTRs and light grey areas are coding regions. B: Human CPE protein (UniprotKB: P16870). Location of the E26RfsX68 mutation is shown by the red
diagonally striped region. Arrow shows the location of Arg283Trp. SP, signalling peptide; PP, pro-peptide. C: Indicative chromatogram of the deletion in the
proband and the normal wild-type sequence. The deletion is indicated in red. Amino acid changes caused by the frameshift are shown above the
chromatogram.

doi:10.1371/journal.pone.0131417.g003
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The overall mean coefficient of variation (CV) for Ct (threshold cycle) values of replicate
samples (for which amplification products were obtained) was 2% for CPE and 1% for HPRT1,
with a mean CT of 34.43 (SD = 1.21) for the CPE assay and a mean Ct of 29.15 (SD = 0.11) for
theHPRT1 assay. No CPE expression was detected in blood RNA from the proband after 40
cycles of amplification, while low but detectable levels were present in the six control samples
and the reference sample. The value for normalised CPE expression in the heterozygous sibling
was at the lower end of the range seen in the controls (Fig 4). Expression of the housekeeping
geneHPRT1 was detected in the proband, sister and all control samples, demonstrating that
lack of detectable CPE expression in the proband was not due to insufficient or poor quality
cDNA template. Ct values for the controls, patient, sibling and reference samples obtained for
the CPE and HPRT assays and ΔΔCt values for all test samples are listed in S3 Table.

Discussion
In this study we present a novel form of monogenic obesity in humans by identifying for the
first time a homozygous deleterious mutation in CPE, leading to complete lack of its
expression.

Although null mutations in CPE have never been reported in humans before, a heterozy-
gous missense mutation (Arg283Trp) resulting in a less active enzyme was reported to affect
age of onset of T2DM in specific Ashkenazi families, but unfortunately no details of BMI or
obesity phenotypes were given [24]. In an earlier study, researchers screened for variants in
CPE in a total of 269 Japanese subjects with non-insulin dependent T2DM, of whom 104 were
also obese. However, no mutations affecting the coding region were found. [25] Common vari-
ants in CPE have not been associated with anthropometric or glycaemic traits in large-scale
meta-analyses, but two intronic single nucleotide polymorphisms, rs1946816 and rs4481204,
were recently reported to be associated with BMI in a European-American cohort [26]. The
rare occurrence of heterozygous mutations and the absence of homozygous frameshift or stop-
codon generating mutations in publicly available datasets (the 1000 Genomes project, the
NHLBI Esp and ExAC) imply that disruption of CPE is uncommon. The recent finding of two
Caucasians in the ExAC database heterozygous for exactly the same deletion as found in the
Sudanese family described here, could point towards a hotspot for breakpoints leading to this
mutation. The finding that in the family presented here, the deletion breakpoints are aligned

Fig 4. CPEmRNA expression levels.Real time PCR analysis of CPEmRNA expression in blood samples
from the proband (II.6), heterozygous sibling (II.5) and six controls. For controls mean ± SEM (standard error
of the mean) is depicted. All analyses were conducted in triplicate.

doi:10.1371/journal.pone.0131417.g004
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with a nucleotide repeat (pointing towards a microhomology-mediated deletion mechanism,
Fig 3) could indicate that this deletion may not be a unique occurrence. The high denaturation
temperature that was needed to amplify the region for PCR, could explain why this mutation
has not been seen before in large scale next generation sequencing cohorts, which is confirmed
by a below average coverage of this region in the open databases available (data on sequencing
quality and depth available from ExAC).

Beside the homozygous frameshift mutation in CPE, three other rare homozygous, pre-
dicted to be pathogenic mutations were found in the proband, but not or only in heterozygous
state in the mother or sister (Table 1). However, all are less likely to contribute to the pheno-
type of obesity, T2DM, hypogonadotrophic hypogonadism or intellectual disability seen in the
proband. XDH, encoding for Xanthine dehydrogenase, is associated with human disease
according to OMIM (Online Mendelian Inheritance in Man) with deleterious mutations in
XDH known to cause Xanthinuria type I. However, the proband had no history of kidney
stones or renal failure and the mutation found (rs138674014) has so far not been linked to
Xanthinuria type 1. Not much is known about the function of PABPC4L, besides its expression
in the brain and multiple other tissues. A recent study on rare CNVs found an association,
although not genome wide significant, between a deletion covering PABPC4L and treatment
resistant depression. [27] The proband however does not have a history of depression. MYL1
encodes for a myosin alkali light chain active in embryonic, foetal and adult fast skeletal muscle
[28]. The mutation found in the proband, a deletion of the first nucleotide of the coding region
of MYL1, in first instance might appear to cause a frameshift starting from the first amino acid
sequence, but the repeat of 10 similar nucleotides preceding the deletion in the non-coding
region makes it less likely an actual frameshift will occur. Examination of this specific nucleo-
tide repeat, preceding the coding region of MYL1, in the ExAC dataset, shows that variation in
this region is not particularly rare (minor allele frequency up to 0.03041 across different
populations).

CPE is a highly conserved gene, located on chromosome 4q32.3, and is widely expressed in
human tissues, including neuropeptide-rich areas of the brain and endocrine tissues [29]. This
is in line with the hormone/peptide-processing function of CPE in endocrine tissues and the
central nervous system. Much of our understanding of CPE function comes from two mouse
models: fat/fat and Cpe knockout mice. fat/fatmice, which have a naturally-occurring point
mutation (Ser202Pro) inactivating Cpe, have slowly developing, adult-onset obesity with
hyperproinsulinaemia and infertility [4]. Complete knockout of Cpe causes a similar pheno-
type, although subtle differences have been reported in weight that may be due to strain and/or
housing differences [11].

The obesity seen in these mouse models is due to an increased consumption of food,
reduced basal metabolic rate, reduced utilisation of lipids for energy and reduced spontaneous
activity [11, 30]. CPE is involved in energy homeostasis through processing of a number of
peptides known to have an anorexogenic effect, including α-melanocyte-stimulating hormone
(α-MSH). CPE removes C-terminal residues from processing intermediates formed by the
cleavage of pro-opiomelanocortin (POMC) by prohormone convertases 1 (PC1/3) and 2, to
generate α-MSH. α-MSH activates the melanocortin-4 receptor (MC4R), exerting an anorexi-
genic and thermogenic effect [31]. Defects in endoproteolytic processing of POMC due to defi-
ciency in PC1/3 or mutations in the POMC gene also cause monogenic severe obesity [32, 33].
Interestingly, thus far, more putative obesity-causing mutations have been found in the POMC
region downstream of the α-MSH coding region, affecting only the β variant of MSH. This
might indicate that β-MSH also plays an important role in the appetite pathway in humans
[34, 35]. β-MSH is not directly processed by CPE, although detailed investigation of indirect
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pathways affecting its functioning levels in CPE deficiency has not been possible so far since
mice do not express β-MSH [36, 37].

The absence of functional CPE in mice also directly impairs the processing of many other
anorexigenic hormones and neuropeptides including cholecystokinin, proinsulin, and proglu-
cagon [4, 7, 11, 38, 39]. Other anorexigenic neuropeptides at reduced levels in CPE deficiency
include Cocaine- and Amphetamine-Regulated Transcript, prothyrotropin releasing hormone,
oxytocin and neurotensin [7, 11, 40]. While some neuropeptides, such as neuropeptide Y, with
an orexigenic function are also decreased, other orexigenic peptides maintain normal levels or
are increased in Cpe deficient mice [7]. So even though both body weight-increasing as well as
body weight-lowering peptides are affected in Cpe deficiency, the mouse models become obese.
This is thought to be due to the severe disruption of the body weight-lowering peptides [7, 30,
41] Therefore, the homozygous null mutation in the CPE gene is a plausible explanation for
the proband’s hyperphagia and obesity, with multiple hormones/neuropeptides likely to be
involved in the pathogenesis.

Besides being obese, both mouse models also show slowly increasing glucose concentrations
leading to hyperglycaemia, caused by obesity-associated insulin resistance and a lack of fully
processed insulin and insulinotropic GLP-1. The diabetes is, however, age-dependent, and not
seen in young or very old fat/fatmouse models, and is also gender and strain dependent [4,
11]. Thus, the proband’s T2DM is also potentially explained by the homozygous null CPE
mutation.

Mouse models indicate that lack of CPE also has effects on bone remodelling, reproduction,
neuroprotection, and behavioural anomalies including memory deficits, depression and anxi-
ety like phenotypes [8–11, 40]. Although, no signs of depression or anxiety were present in the
proband, her intellectual disability and hypogonadotrophic hypogonadism could be explained
by the CPE deficiency, though other causes of these specific phenotypes cannot be definitively
excluded. However, the similarity to the early onset-obesity and hypogonadotrophic hypogo-
nadism seen in a woman with reduced PC1/3 activity, and the early-onset obesity, intellectual
disability and hypogenitalism in the deceased brother of the proband investigated here does
point to a likely homozygous genetic cause of these features [32]. Although gastrointestinal
problems have been repeatedly described in PC1/3 deficient patients, such symptoms were not
present in the proband [42, 43].

Cpe was identified as the causative gene in the fat/fatmouse two decades ago, around the
same time leptin was identified as the missing hormone in the ob/obmouse, and a mutation in
its receptor identified in the db/dbmouse [4]. However, unlike the subsequent identification of
human mutations in LEP and LEPR, a causative null mutation in CPE has to our knowledge
not been described before in humans. This reported case of a CPE knockout in humans demon-
strates clear similarities in the observed phenotypes between humans and the fat/fat and Cpe
knockout mice. This is only the third example in which congenital deficiency of a pro-hor-
mone/peptide processing enzyme has been associated with human disease, the others being
PC1/3 in human obesity (which is involved in overlapping endocrine/metabolic pathways)
[32], and PCSK9 in autosomal dominant hypercholesterolaemia [44].

The proband presented here exhibits hypogonadotrophic hypogonadism and intellectual
disability, which may be diagnostic features of CPE deficiency and so genetic investigation of
CPE is warranted in similar cases where other known genetic causes have been excluded, espe-
cially with co-existent obesity. Ongoing detailed phenotyping of the homozygote proband and
heterozygote family members, including assessment of circulating levels of hormones regulat-
ing glycaemia and appetite regulation, will further clarify the role of the CPE pro-hormone/
peptide processing enzyme in human physiology. Our data add to the growing list of
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monogenic obesity genes in humans, which will help provide diagnostic and therapeutic
opportunities for this challenging and often clinically neglected group of patients.
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