82 research outputs found

    Response to comment on Vassy et al. polygenic type 2 diabetes prediction at the limit of common variant detection. Diabetes 2014;63:2172-2182.

    Get PDF
    Abbasi et al. (1) raise excellent points about the current and future states of type 2 diabetes risk prediction. Two issues in particular are worth consideration. First, our clinical and polygenic prediction models do not include time-varying assessments of known risk factors such as BMI and fasting glucose (2). Abbasi et al. are correct that doing so would likely improve the models\u2019 predictive accuracy. Instead, we patterned our models on what is more common in clinical practice. In many ways, the Framingham Heart Study cardiovascular disease risk score defines the paradigm of using a \u201csnapshot in time\u201d approach to risk assessment. That is, what can the characteristics of a patient sitting in front of the clinician tell him or her about that patient\u2019s risk of an outcome 10 years from now? The dynamic risk factors Abbasi et al. propose will be especially salient if clinicians increasingly incorporate risk factor trajectories into their clinical decision making. Second, their tiered approach to risk stratification (i.e., obtaining more resource-intensive information only among those individuals whose history suggests higher risk) places an appropriate emphasis on the risks, benefits, and costs of screening. We agree with their call for an evaluation of such screening strategies, although we would argue that anthropometry and basic laboratory analyses are already routinely measured in the many clinical settings. An interesting question, then, is whether collection of genome-wide data will be increasingly routine in the clinical setting or even brought by the patients themselves after consulting genotyping services outside of the standard clinical setting. We think our analyses show that even if each individual had his or her genotype for common genetic variation stored in the electronic medical record, its marginal value in diabetes risk prediction would be small. Whether more sophisticated genetic information available soon from high-throughput whole-genome sequencing with detailed functional annotation will improve type 2 diabetes risk prediction, drug targeting, or patient care overall remains an important question for the future

    Polygenic type 2 diabetes prediction at the limit of common variant detection.

    Get PDF
    Genome-wide association studies (GWAS) may have reached their limit of detecting common type 2 diabetes (T2D)-associated genetic variation. We evaluated the performance of current polygenic T2D prediction. Using data from the Framingham Offspring (FOS) and the Coronary Artery Risk Development in Young Adults (CARDIA) studies, we tested three hypotheses: 1) a 62-locus genotype risk score (GRSt) improves T2D prediction compared with previous less inclusive GRSt; 2) separate GRS for \u3b2-cell (GRS\u3b2) and insulin resistance (GRSIR) independently predict T2D; and 3) the relationships between T2D and GRSt, GRS\u3b2, or GRSIR do not differ between blacks and whites. Among 1,650 young white adults in CARDIA, 820 young black adults in CARDIA, and 3,471 white middle-aged adults in FOS, cumulative T2D incidence was 5.9%, 14.4%, and 12.9%, respectively, over 25 years. The 62-locus GRSt was significantly associated with incident T2D in all three groups. In FOS but not CARDIA, the 62-locus GRSt improved the model C statistic (0.698 and 0.726 for models without and with GRSt, respectively; P < 0.001) but did not materially improve risk reclassification in either study. Results were similar among blacks compared with whites. The GRS\u3b2 but not GRSIR predicted incident T2D among FOS and CARDIA whites. At the end of the era of common variant discovery for T2D, polygenic scores can predict T2D in whites and blacks but do not outperform clinical models. Further optimization of polygenic prediction may require novel analytic methods, including less common as well as functional variants

    Personal Genome Project UK (PGP-UK): a research and citizen science hybrid project in support of personalized medicine

    Get PDF
    Background: Molecular analyses such as whole-genome sequencing have become routine and are expected to be transformational for future healthcare and lifestyle decisions. Population-wide implementation of such analyses is, however, not without challenges, and multiple studies are ongoing to identify what these are and explore how they can be addressed. Methods: Defined as a research project, the Personal Genome Project UK (PGP-UK) is part of the global PGP network and focuses on open data sharing and citizen science to advance and accelerate personalized genomics and medicine. Results: Here we report our findings on using an open consent recruitment protocol, active participant involvement, open access release of personal genome, methylome and transcriptome data and associated analyses, including 47 new variants predicted to affect gene function and innovative reports based on the analysis of genetic and epigenetic variants. For this pilot study, we recruited 10 participants willing to actively engage as citizen scientists with the project. In addition, we introduce Genome Donation as a novel mechanism for openly sharing previously restricted data and discuss the first three donations received. Lastly, we present GenoME, a free, open-source educational app suitable for the lay public to allow exploration of personal genomes. Conclusions: Our findings demonstrate that citizen science-based approaches like PGP-UK have an important role to play in the public awareness, acceptance and implementation of genomics and personalized medicine

    Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes.

    No full text
    OBJECTIVE: A genetic risk score (GRS) comprised of single nucleotide polymorphisms (SNPs) and metabolite biomarkers have each been shown, separately, to predict incident type 2 diabetes. We tested whether genetic and metabolite markers provide complementary information for type 2 diabetes prediction and, together, improve the accuracy of prediction models containing clinical traits. RESEARCH DESIGN AND METHODS: Diabetes risk was modeled with a 62-SNP GRS, nine metabolites, and clinical traits. We fit age- and sex-adjusted logistic regression models to test the association of these sources of information, separately and jointly, with incident type 2 diabetes among 1,622 initially nondiabetic participants from the Framingham Offspring Study. The predictive capacity of each model was assessed by area under the curve (AUC). RESULTS: Two hundred and six new diabetes cases were observed during 13.5 years of follow-up. The AUC was greater for the model containing the GRS and metabolite measurements together versus GRS or metabolites alone (0.820 vs. 0.641, P < 0.0001, or 0.820 vs. 0.803, P = 0.01, respectively). Odds ratios for association of GRS or metabolites with type 2 diabetes were not attenuated in the combined model. The AUC was greater for the model containing the GRS, metabolites, and clinical traits versus clinical traits only (0.880 vs. 0.856, P = 0.002). CONCLUSIONS: Metabolite and genetic traits provide complementary information to each other for the prediction of future type 2 diabetes. These novel markers of diabetes risk modestly improve the predictive accuracy of incident type 2 diabetes based only on traditional clinical risk factors
    • …
    corecore